Какого назначение объектива и окуляра в телескопе. Как выбрать телескоп


Главные части в телескопе - объектив и окуляр. Объектив направляют в сторону объекта, который хотят наблюдать, а в окуляр смотрят глазом.

Существует три основных типа оптических систем телескопов – рефрактор (с линзовым объективом), рефлектор (с зеркальным объективом) и зеркально-линзовый телескоп.

Телескоп-рефрактор имеет в качестве объектива линзу в передней части трубы. Чем больше диаметр линзы, тем ярче кажется небесный объект в поле зрения, тем более слабый объект можно заметить в этот телескоп. Как правило, объектив рефрактора представляет собой не одиночную линзу, а систему линз. Они изготовляются из разных сортов стекла и склеиваются между собой специальным клеем. Это делается для того, чтобы уменьшить искажения в изображении. Эти искажения называются аберрациями. Аберрациями обладает любая линза. Главные из них – сферическая аберрация и хроматическая аберрация.

Сферическая аберрация заключается в том, что края линзы сильнее отклоняют световые лучи, чем середина. Иными словами, лучи света, пройдя через линзу, не сходятся в одном месте. А нам очень важно, чтобы лучи сходились в одной точке. Ведь от этого зависит чёткость изображения. Но это еще полбеды. Ты знаешь, что белый свет является составным – в него входят лучи всех цветов радуги. В этом легко убедиться с помощью стеклянной призмы. Направим на неё узкий луч белого света. Мы увидим, что белый луч, во-первых, разложится на несколько цветных лучей, и, во-вторых преломится, т.е. изменит направление. Но самое важное то, что лучи разного цвета преломляются по-разному – красные отклоняются меньше, а синие – больше. Линза тоже своего рода призма. И она неодинаково фокусирует лучи разных цветов – синие собираются в точку ближе к линзе, красные – дальше от неё.


Изображение, даваемое линзой, всегда слегка окрашено по краям радужной каймой. Так проявляет себя хроматическая аберрация.

Чтобы уменьшить сферическую и хроматическую аберрации, средневековые астрономы придумали делать линзы с очень большим фокусным расстоянием. Фокусное расстояние – это расстояние от центра линзы до фокуса , т.е. точки, где происходит пересечение преломленных лучей света (на самом деле в фокусе получается крошечное изображение предмета). Задача объектива - собрать побольше света от небесного объекта и построить крошечное и чёткое изображение этого предмета в фокусе.


Польский астроном XVII века Ян Гевелий изготавливал телескопы длиной 50 метров. Зачем? Чтобы не так сильно сказывались аберрации, т.е. чтобы получить возможно более чёткое и неокрашенное изображение небесного объекта. Конечно, работать с таким рефрактором было очень неудобно. Поэтому Гевелий, хотя и был трудолюбивым астрономом, многого не смог открыть.

Впоследствии оптики придумали делать объектив не из одной, а из двух линз. Причём так подбирали сорта стекол и кривизну их поверхностей, что аберрации одной линзы гасили, компенсировали аберрации другой линзы.



Так появился сложный объектив. Рефракторы сразу уменьшились в размерах. Зачем делать длинный телескоп, если качественный объектив можно сделать более короткофокусным? Именно поэтому в детских телескопах такое плохое изображение – ведь там используется в качестве объектива всего одна линза. А нужно минимум две. Одна линза стоит дешевле, чем две, поэтому детские телескопы так дешевы. Но всё-таки, какие бы стёкла оптики ни подбирали для объективов, совсем избежать хроматической аберрации не удаётся. Поэтому в рефракторах всегда есть небольшой синий ореол вокруг изображения. Однако в целом, рефракторы среди телескопов других систем дают самое чёткое изображение.

Ты должен остановить свой выбор на рефракторе, если собираешься наблюдать подробности небесных объектов – горы и кратеры на Луне, полосы и Большое Красное Пятно на Юпитере, кольца Сатурна, двойные звёзды, шаровые звёздные скопления и т.п. Бледные, размытые объекты – туманности, галактики, кометы – нужно наблюдать в телескоп-рефлектор .

В рефлекторе свет собирается не линзой, а вогнутым зеркалом определённой кривизны. Зеркало изготовить проще, чем линзу, потому что приходится шлифовать только одну поверхность. К тому же, для линз нужно особое качественное стекло, а для зеркал подходит любое стекло. Поэтому рефлекторы в целом стоят дешевле рефракторов с таким же диаметром линзы. Многие любители астрономии сами строят неплохие рефлекторы. Главное преимущество рефлектора в том, что зеркало не даёт хроматической аберрации. Первый в истории рефлектор создал Исаак Ньютон в XVIII веке. Этот английский учёный первым заметил, что вогнутое зеркало одинаково отражает лучи всех цветов и может создавать неокрашенное изображение. Ньютон разработал оптическую систему телескопа, которую принято называть Ньютоновской. Рефлекторы системы Ньютона изготовляются сегодня промышленным способом во многих странах мира.

Самый большой рефлектор системы Ньютона в XVIII веке построил английский астроном Вильям Гершель. Диаметр вогнутого зеркала был 122 см, а длина трубы телескопа – 12 метров. Конечно, телескоп неуклюжий, но всё-таки это уже не 50-метровый рефрактор Гевелия. Со своим телескопом Гершель совершил много замечательных открытий. Одно из самых важных – открытие планеты Уран.

Посмотрим на ход лучей в системе рефрактора и рефлектора.



В рефракторе свет проходит через линзу и непосредственно попадает в окуляр и дальше в глаз наблюдателя. В рефлекторе свет отражается от вогнутого зеркала и направляется сначала на плоское зеркало, установленное в верхней части трубы, и только потом попадает в окуляр и глаз. В рефлекторе, таким образом, работает два зеркала – одно вогнутое (главное), другое плоское (диагональное). Задача главного зеркала такая же, как у линзового объектива - собирать свет и строить крошечное и чёткое изображение в фокусе.

Плоское (диагональное) зеркало держится на специальных растяжках (как правило, их 4 штуки) в передней части трубы. А теперь представь: свет попадает в трубу телескопа, часть света загораживает плоское зеркало и растяжки. В результате на главное вогнутое зеркало попадает меньше света, чем могло попасть. Это называется центральным экранированием. Центральное экранирование приводит к потере чёткости изображения.



Наконец, познакомимся с зеркально-линзовыми телескопами . Они сочетают в себе элементы и рефрактора и рефлектора. Там есть и вогнутое зеркало, и линза в передней части трубы. Как правило, задняя часть этой линзы посеребрена. Этот серебристый кружок играет роль дополнительного зеркала. Ход световых лучей в зеркально-линзовых телескопах сложнее. Свет проходит через переднюю линзу, затем попадает на вогнутое зеркало, отражается от него, идёт обратно к передней линзе, отражается от серебристого кружка, идёт обратно к вогнутому зеркалу и проходит сквозь отверстие в этом зеркале. И только после этого свет попадает в окуляр и глаз наблюдателя. Световой поток внутри трубы три раза меняет направление. Поэтому зеркально-линзовые телескопы так компактны. Если у тебя мало места на балконе, то свой выбор нужно остановить именно на таком телескопе.

Существует несколько оптических систем зеркально-линзовых телескопов. Например, телескоп системы Максутова, Шмидта, Кассегрена, Клевцова. Каждый из этих оптиков по-своему решает основные недостатки зеркально-линзового телескопа. Что же это за недостатки? Во-первых, много оптических поверхностей. Давай посчитаем: как минимум 6, и на каждой из них теряется часть света (к сведению, в рефракторе и рефлекторе их по 4). В нутри такого телескопа теряется много света. Если рефрактор способен пропускать 92% попадающего в него света от небесного объекта, то через зеркально-линзовый телескоп проходит только 55% света. Иными словами, объекты в такой телескоп выглядят более тусклыми по сравнению с рефрактором с таким же диаметром объектива. Поэтому зеркально-линзовые телескопы лучше использовать для ярких объектов – Луны и планет. Но, учитывая центральное экранирование из-за зеркала на передней линзе, приходится признать, что чёткость изображения также ниже, чем в рефракторе. Во-вторых, и линза, и вогнутое зеркало создают свои аберрации. Поэтому качественный зеркально-линзовый телескоп стоит довольно дорого.





Увеличение телескопа. Чтобы найти увеличение телескопа, нужно фокусное расстояние объектива разделить на фокусное расстояние окуляра. Например, объектив имеет фокусное расстояние 1 м (1 000 мм), при этом у нас в распоряжении три окуляра с фокусными расстояниями 5 см (50 мм), 2 см (20 мм) и 1 см (10 мм). Меняя эти окуляры, мы получим три увеличения:


Обрати внимание, если мы берём фокусное расстояние объектива в мм, то и фокусное расстояние окуляра тоже в мм.

Казалось бы, если брать всё более короткофокусные окуляры, то можно получать всё большие увеличения. Например, окуляр с фокусным расстоянием 1 мм дал бы с нашим объективом увеличение 1 000 крат. Однако изготовить такой окуляр с высокой точностью очень сложно, да и нет необходимости. При наземных наблюдениях использовать увеличение более 500 крат не удаётся из-за атмосферных помех. Даже если поставить увеличение в 500 крат, атмосферные течения так сильно портят изображение, что на нём нельзя рассмотреть ничего нового. Как правило, наблюдения проводят с увеличением максимум 200-300 крат.

Несмотря на применение больших увеличений, звёзды в телескоп всё равно выглядят точками . Причина - колоссальная удалённость звёзд от Земли. Однако, телескоп позволяет увидеть невидимые глазом звёзды, т.к. собирает больше света, чем человеческий глаз. Звёзды в телескоп выглядят ярче, у них лучше различаются оттенки, а также сильнее заметно мерцание, вызываемое земной атмосферой.

Максимальное и минимальное полезные увеличения телескопа. Одно из назначений телескопа в том, чтобы собрать побольше света от небесного объекта. Чем больше света пройдёт через объектив телескопа, тем ярче будет выглядеть объект в поле зрения. Это особенно важно при наблюдении туманных объектов - туманностей, галактик, комет. При этом нужно, чтобы весь собранный свет попал в глаз наблюдателя.


Максимальный диаметр зрачка человеческого глаза 6 мм. Если выходящий из окуляра световой пучок (т.н. выходной зрачок ) будет шире 6 мм, значит, часть света в глаз не попадёт. Следовательно, нужно использовать такой окуляр, который даёт выходной зрачок не шире 6 мм. При этом телескоп даст минимальное полезное увеличение. Его рассчитывают так: диаметр объектива (в мм) делят на 6 мм. Например, если диаметр объектива 120 мм, то минимальное полезное увеличение будет 20 крат. Ещё меньшее увеличение на этом телескопе использовать нерационально, так как выходной зрачок будет больше 6 мм.

Запомни закономерность: чем меньше увеличение телескопа, тем больше выходной зрачок (и наоборот).

Минимальное полезное увеличение телескопа ещё называют равнозрачковым , потому что выходной зрачок окуляра совпадает с максимальным диаметром зрачка человека - 6 мм.

Чтобы найти максимальное полезное увеличение телескопа, нужно диаметр объектива (в мм) умножить на 1,5. Если диаметр объектива 120 мм, то получим максимальное полезное увеличение 180 крат. Большее увеличение на этом телескопе получить можно, но это будет бесполезно, т.к. новых деталей выявить не удастся из-за появления дифракционных картин. При наблюдении двойных звёзд иногда используют увеличение, численно равное удвоенному диаметру объектива (в мм).

Таким образом, на телескопе с диаметром объектива 120 мм имеет смысл использовать увеличения от 20 до 180 крат.

Существует т.н. проницающее увеличение. Считают, что при его использовании достигается наилучшее проницание - становятся видны самые слабые звёзды, доступные для данного телескопа. Проницающее увеличение используют для наблюдения звёздных скоплений и спутников планет. Чтобы его найти, нужно диаметр объектива (в мм) разделить на 0,7.

В телескопах совместно с окуляром иногда применяют т.н. линзу Барлоу , представляющую собой рассеивающую линзу. Если линза Барлоу двухкратная (2х), то она как бы увеличивает фокусное расстояние объектива в 2 раза (3-кратная линза Барлоу - в 3 раза). Если, например, у объектива фокусное расстояние равно 1 000 мм, то с использованием 2-кратной линзы Барлоу и окуляра с фокусным рассоянием 10 мм мы получим увеличение 200 крат. Таким образом, линза Барлоу служит для повышения увеличения. Конечно, эта линза вносит в общую картину свои аберрации, поэтому при выявлении мелких деталей на Луне, Солнце, планетах от этой линзы лучше отказаться.

Подробнее смотри

Телескоп, оборудованный для фотографии небесных объектов, называется астрографом . В нём вместо окуляра используется приёмник излучения (раньше это была фотопластинка, фотоплёнка, сегодня - приборы с зарядовой связью). Светочувствительный элемент приёмника излучения располагается в фокусе объектива, так что крошечное изображение предмета запечатлевается. Сегодня астрограф непременно используется в сочетании с компьютером.

Правильная эксплуатация увеличительного прибора является залогом успешного выполнения задач в области биологии, зоологии, ботаники. Понимая принцип функционирования, можно быстро освоить методики микроскопирования, применить их на практике, обучить ребенка. Из настоящей статьи вы узнаете для чего нужны в микроскопе окуляр и объектив, как их использовать для получения четкой картинки, как их менять. Это важнейшие элементы оптической конструкции, без которых наблюдательная техника не может работать.

В микроскопе окуляр выполняет функцию передачи построенного изображения в органы зрения наблюдателя. К нему практически вплотную подносят глаз, при этом второй - закрывается. При включенной подсветке исследователь видит светлое поле в форме окружности. Освещение следует отрегулировать так, чтобы было комфортно, т.к. слишком яркое излучение может привести к бликам и искажениям. Теперь, если по центру столика положить микропрепарат, человек сможет рассмотреть его детализацию в мельчайших подробностях. Это возможно благодаря способности света огибать препятствия или отражаться от непрозрачной поверхности.

Каждый окуляр характеризуется определенным углом обзора, зависящим от кратности приближения. Например, 10-кратный дает наиболее широкий обзор, позволяющий охватить взглядом максимальную область просматриваемого образца. Он маркируется аббревиатурой WF, означающей «широкоугольный».

Диаметр линзы и окантовки корпуса определяет соответствие посадочному отверстию в монокулярной или бинокулярной насадках. Стандартные значения данного параметра такие:

  • Для биологических микроскопов - 23,2мм и 30,0мм;
  • Для стереоскопических - 30,5мм.

Объектив нужен для сбора первичной визуальной информации о структуре изучаемого объекта. Его надо наводить на микрообразец. Совокупность оптических элементов, находящихся в нем, преобразует световой пучок - увеличивает линейные и угловые размеры изображения и перенаправляет его в призму для дальнейшего прохождения через окулярную трубку. Погрешности, вызываемые системой оптики, называются «аберрации». Они незначительно изменяют действительную визуализацию ввиду эффекта рассеивания. Поэтому качественный объектив всегда проектируется с учетом исключения (или минимизации) влияния хроматизма, отсюда за ним закрепилось название «ахроматический». Ими оснащаются школьные, лабораторные и медицинские микроскопы.

Маркировки объективов:

  • Achro - «ахромат»;
  • S - подпружиненный (пружинка не даст предметному стеклу и линзам треснуть при неаккуратном надавливании);
  • Oil - для исследований в масляной иммерсии;
  • DIN - расшифровывается как «Deutsches Institut Normung» в немецкой классификации. Они обладают большим парфокальным расстоянием в 45 миллиметров, достигаемом многократной склейкой линз. Это улучшает качество визуализируемой картинки;
  • PLAN - «планахроматы», скорректированные «на бесконечность» - исправляют до 90 процентов видимого поля. Считаются самыми прогрессивными, сильно повышают стоимость микроскопов.

Объективы вкручиваются в револьверное устройство - это вращающийся на подшипниках металлический барабан с гнездами, резьбой и фиксатором. Чтобы провести смену увеличения надо взяться за кольцо револьвера двумя пальцами и аккуратно повернуть до легкого щелчка.

Если необходима дополнительная консультация позвоните по телефону магазина или напишите на электронную почту.

Основные формулы, показывающие на что примерно способен телескоп.
Не забывайте только, что это теория, на деле всё сильно зависит от качества изделия, правильности настройки и состояния атмосферы.

Сначала три основных понятия:
Апертура телескопа (D)
Фокусное расстояние телескопа (F)
Кратность телескопа (Г)

Сами формулы:

Кратность или увеличение телескопа (Г)

Г=F/f , где F - фокусное расстояние объектива, f - фокусное расстояние окуляра.
F вы изменить чаще всего не можете, но имея окуляры с разным f, вы сможете менять кратность или увеличение телескопа Г.

Максимальное увеличение (Г max)

Максимальное увеличение телескопа ограничено диаметром объектива. Принято считать, что Г max=2*D, но из-за поправок на искажения, точности изготовления и настройки, лучше немного занизить эту величину:
Г max=1,5*D , где D - фокусное расстояние объектива.
А если труба окажется способна на большее - пусть это лучше сюрпризом будет, чем наоборот... Используя линзу Барлоу, можно поднять максимальное увеличение телескопа в разы, но в итоге вы получите всего-лишь размытое пятно больших размеров и никаких дополнительных деталей.
Есть, правда, другой подход: немного более крупные размеры часто позволяют лучше расмотреть тот же объект, несмотря на то, что деталей на нём не прибавится. Наверное поэтому и советуют обычную формулу: Г max=2*D. То есть, это зависит от объекта и вашего вкуса...

Светосила

Светосила телескопа определяется в виде отношения D:F. Если не особо заморачиваться, то чем меньше это отношение, тем лучше телескоп подходит для наблюдения галактик и туманностей (например 1:5). А более длиннофокусный телескоп с соотношением вроде 1:12 лучше подходит для наблюдения Луны.

Разрешающая способность (b)

Разрешающая способность телескопа - наименьший угол между такими двумя близкими звездами, когда они уже видны как две, а не сливаются зрительно в одну. Проще говоря, под разрешающей способностью можно понимать "чёткость" изображения (да простят меня профессионалы-оптики...).
b=138/D , где D - апертура объектива. Измеряется в секундах (точнее в секундах дуги).
Из-за атмосферы эта величина нечасто бывает меньше 1" (1 секунды). Например, на Луне 1" соответствует кратеру диаметром около 2 км.
Для длиннофокусных объективов, со значением светосилы 1:12 и более длинных, формула немного другая: b=116/D (по Данлопу).

Из сказанного выше видно, что в обычных условиях минимальная разрешающая способность в 1" достигается при апертуре 150мм у рефлекторов и около 125мм у планетников-рефракторов. Более апертуристые телескопы дают более чёткое изображение только в теории, ну или высоко в горах, где чистая атмосфера, либо в те редкие дни, когда "с погодой везёт"...
Однако, не забывайте, что чем больше телескоп, тем ярче изображение, тем виднее более тусклые детали и объекты. Поэтому, с точки зрения обычного наблюдателя, изображение у больших телескопов всё равно оказывается лучше, чем у маленьких.
Вдобавок, в короткие промежутки времени атмосфера над вами может успокоиться настолько, что большой телескоп покажет картинку более чёткую, чем при том самом пределе в 1", а вот маленький телескоп упрётся в это ограничение и будет очень обидно...
Так что, нет особого смысла ограничиваться 150-ю миллиметрами;)

Предельная звёздная величина (m)

Предельная звёздная величина , которая видна в телескоп, в зависимости от апертуры:
m=2.1+5*lg(D) , где D – диаметр телескопа в мм., lg - логарифм.
Если возьмётесь расчитывать, то увидите, что предельная звёздная величина , доступная нашему глазу через самый большой "магазинный" телескоп с апертурой 300мм - около 14,5 m . Более слабые объекты ищутся через фотографирование и последующую компьютерную обработку кадров.

Приведу для справки таблицу соответствия апертуры телескопа D и предельной звёздной величины:

D, мм m D, мм m
32 9,6 132 12.7
50 10,6 150 13
60 11 200 13,6
70 11,3 250 14,1
80 11,6 300 14,5
90 11,9 350 14,8
114 12,4 400 15,1
125 12,6 500 15,6

На деле значения будут немного отличаться из-за разницы световых потерь в разных конструкция телескопов.
При одинаковой апертуре D, выше всего предельная звёздная величина в линзовых телекопах-рефракторах.
В зеркальных рефлекторах потери выше - очень грубо можно отнять 10-15%.
В катадиопртиках потери самые большие, соответственно и предельная звёздная величина самая маленькая.
Также велики потери в биноклях из-за наличия нескольких преломляющих призм - их я имел ввиду, дав диаметры 32 и 50 мм. То есть, в биноклях предельная звёздная величина будет гораздо меньше табличной. На сколько - зависит от качества марки бинокля, в частности от качества просветляющего покрытия всех поверхностей - это нельзя предсказать для всех моделей.
Сложные и дорогие окуляры тоже задерживают свет за счёт большего количества линз - неизбежная плата за качество изображения (хотя, их качественные просветляющие покрытия частично снижают этот недостаток).
То есть, при одинаковой апертуре, в линзовый телескоп-рефрактор с самым простеньким окуляром вы увидите максимум возможного при данном D.
Но, поскольку, рефракторы больших диаметров дороги, то за те же деньги можно взять гораздо более апертуристый рефлектор и увидеть значительно больше.

Выходной зрачок

Выходной зрачок телескопа = D/Г
Хорошо, когда выходной зрачок телескопа равен 6 мм., это значит, что весь свет собираемый объективом попадёт в глаз (6 мм. - примерный диаметр человеческого зрачка в темноте). Если выходной зрачок окажется больше, то часть света потеряется, подобно тому, как если бы мы задиафрагмировали объектив.
На деле удобнее считать "от обратного". Например:
Для моего телескопа с апертурой D=250мм, максимальное увеличение без потери яркости = 250мм/6мм = 41,67 крат. То есть, при увеличении 41,67 выходной зрачок будет равен 6 мм.
Ну, и какой окуляр мне нужен для этого телескопа, чтобы получить это самое "равнозрачковое увеличение"?
Вспоминаем: f=F/Г.
Тогда: фокусное расстояние F моего Добсона": 1255мм. "Г" уже нашли: 41,67 крат.
Получается, что мне нужен окуляр f=1255/41,67=30,1мм. Да, примерно такой окуляр и шёл в комплекте:)...
42 крата - это совсем немного, но достаточно для рассматривания звёздных полей, а вот уже для Андромеды маловато...
(Берём окуляр с фокусом покороче. Ура, получается крупнее! Но... темнее. И чем больше кратность, тем темнее будет картинка.)
Это был расчёт для довольно апертуристого телескопа, а какая будет кратность для равнозрачковости в рядовые телескопы - посчитайте сами: одни слёзы... Поэтому и говорят, что "апертура рулит" - чем она выше, там картинка ярче при одинаковой кратности (при одинаковой конструкции телескопов).

Поле зрения телескопа

Поле зрения телескопа = поле зрения окуляра / Г
Поле зрения окуляра указано в его паспорте, а увеличение Г телескопа с данным окуляром мы уже знаем как расчитать: Г=F/f.
Чем полезно знание поля зрения телескопа ?
Чем больше поле зрения телескопа , тем больший кусок неба виден, но тем мельче объекты.
Зная какое поле (угол) захватит ваш телескоп при заданном увеличении, и зная уговые размеры искомого объекта, можно прикинуть какую часть поля зрения займёт этот объект, то есть прикинуть общий вид того, что вы увидите в окуляре.
Если вы ищете объект не по координатам, а по картам, то полезно сделать из проволоки колечки, которые соответствуют на карте угловым полям зрения ваших окуляров в составе данного телескопа. Тогда гораздо легче ориентироваться: двигая телескоп от звезды к звезде и одновременно перемещая колечко на карте, вы легко можете сверять оба изображения.

Теперь, когда примерно ясна взаимосвязь характеристик телескопа, можно другими глазами посмотреть на то,

Лупой называют собирающую короткофокусную линзу. Угловое увеличение - это отношение углов зрения, которое получено с помощью оптического прибора, и угла зрения невооруженного глаза на расстоянии наилучшего зрения.

2. Из каких оптических элементов состоит микроскоп? Объясните назначение объектива и окуляра.

Микроскоп состоит из двух короткофокусных линз - окуляра (ближайшая линза к глазу наблюдателя) и объектива (ближайшая к предмету линза). Окуляр выполняет роль лупы.

3. Объясните ход лучей в микроскопе. Напишите выражение для углового увеличения микроскопа. В каких пределах оно может изменяться?

Оно изменяется от 15 до 1200.

Объектив создает перед окуляром увеличенное изображение предмета, а затем окуляр увеличивает это изображение. (Рис. 222 б учебника.)

4. Из каких оптических элементов состоит телескоп-рефрактор? Объясните назначение объектива и окуляра.

Телескоп-рефрактор состоит из объектива и окуляра.

Окуляр выполняет роль лупы, обеспечивая угловое увеличение предмета. Фокусы объектива и окуляра практически совпадают. В окуляре образуется прямое, мнимое, увеличенное изображение.

5. Объясните ход лучей в телескопе-рефракторе. Напишите выражение для углового увеличения телескопа-рефрактора. Чем ограничено применение таких телескопов?

Окуляр обеспечивает угловое увеличение предмета. Фокусы объектива и окуляра практически совпадают. В окуляре образуется прямое, мнимое, увеличенное изображение.

по физике

«Устройство, назначение, принцип работы, типы и история телескопа»


Работу выполнил:

ученик 8 v класса

Рижской шлолы Nr . 66

Юрий Круглов

РИГА

2005 год

Устройство телескопа

Телескоп любого типа имеет объектив и окуляр.

Линза, обращенная к объекту наблюдения, называется Объективом , а линза, к которой прикладывает свой глаз наблюдатель – Окуляр.

Может быть дополнительная лупа, которая позволяет приблизить глаз к фокальной плоскости и рассматривать изображение с меньшего расстояния, т. е. под большим углом зрения.

Таким образом, телескоп можно изготовить, расположив на одной оси одна за другой две линзы - объектив и окуляр. Для наблюдений близких земных предметов суммарное расстояние фокусов должно быть увеличено.Меняя окуляры, можно получить различные увеличения при одном и том же объективе.

Если линза толще посередине, чем на краях, она называется Собирающей или Положительной , в противном случае – Рассеивающей или Отрицательной.

Прямая, соединяющая центры этих поверхностей, называется Оптической осью линзы. Если на такую линзу попадают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой Фокусом линзы. Расстояние от центра линзы до её фокуса называют фокусным расстоянием. Чем больше кривизна поверхностей собирающей линзы, тем меньше фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.

Tелескоп принято характеризовать угловым увеличением γ. В отличие от микроскопа, предметы, наблюдаемые в телескоп, всегда удалены от наблюдателя.


Назначение телескопа

Телескопы бывают самыми разными – оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения искуственных спутников Земли), радиотелескопы, инфракрасные, нейтринные, рентгеновские. При всем своем многообразии, все телескопы, принимающие электромагнитное излучение, решают две основных задачи.

Первая задача телескопа - создать максимально резкое изображение и, при визуальных наблюдениях, увеличить угловые расстояния между объектами (звездами, галактиками и т. п.);собрать как можно больше энергии излучения, увеличить освещенность изображения объектов.

Вторая задача телескопа – увеличивать угол, под которым наблюдатель видит объект. Способность увеличивать угол характеризуется увеличением телескопа. Оно равно отношению фокусных расстояний объектива и окуляра

Принцип работа телескопа

Принцип работы телескопа заключается не в увеличении объектов, а в сборе света. Чем больше у него размер главного светособирающего элемента - линзы или зеркала, тем больше света он собирает. Важно, что именно общее количество собранного света в конечном счете определяет уровень детализации видимого - будь то удаленный ландшафт или кольца Сатурна. Хотя увеличение, или сила для телескопа тоже важно, оно не имеет решающего значения в достижении уровня детализации.


Типы телескопов

Все телескопы подразделяются на три оптических класса.

Преломляющие телескопы, или рефракторы , в качестве главного светособирающего элемента используют большую линзу-объектив.

Рефракторы всех моделей включают ахроматические (двухэлементные) объективные линзы - таким образом сокращается или практически устраняется ложный цвет, который влияет на получаемый образ, когда свет проходит через линзу. При создании и установке больших стеклянных линз возникает ряд трудностей; кроме того, толстые линзы поглощают слишком много света. Самый большой рефрактор в мире, имеющий объектив с линзой диаметром в 101 см, принадлежит Йеркской обсерватории.

Все большие астрономические телескопы представляют собой рефлекторы . Рефлекторные телескопы популярны и у любителей, поскольку они не так дороги, как рефракторы. Это отражающие телескопы, и для сбора света и формирования изображения в них используется вогнутое главное зеркало. В рефлекторах ньютоновского типа, маленькое плоское вторичное зеркало отражает свет на стенку главной трубы.


Зеркально-линзовые (катадиоптрические) телескопы используют как линзы, так и зеркала, за счет чего их оптическое устройство позволяет достичь великолепного качества изображения с высоким разрешением, при том, что вся конструкция состоит из очень коротких портативных оптических труб.


История телескопа

Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем. Телескоп имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение. Однако он позволил сделать целую серию замечательных открытий (фазы Венеры, горы на Луне, спутники Юпитера, пятна на Солнце, звезды в Млечном Пути).
Очень плохое качество изображения в первых телескопах заставило оптиков искать пути решения этой проблемы. Оказалось, что увеличение фокусного расстояния объектива значительно улучшает качество изображения.
В 1663 году Грегори создал новую схему телескопа-рефлектора. Грегори первым предложил использовать в телескопе вместо линзы зеркало.

Первый телескоп-рефлектор был построен Исааком Ньютоном в 1668 году. Схема, по которой он был построен, получила название «схема Ньютона»..
Длина телескопа составляла 15 см.
В 1672 году Кассегрен предложил схему двухзеркальной системы, вскоре ставшую наиболее популярной. Первое зеркало было параболическим, второе имело форму выпуклого гиперболоида и располагалось перед фокусом первого.
В настоящее время практически все телескопы являются зеркальными.
Самый большой в мире зеркальный телескоп имени Кека имеет диаметр 10 м и находится на Гавайских островах. В России на Кавказе работает телескоп размером 6 м.

В двадцатом веке астрономы сделали много шагов в изучении вселенной.

Эти шаги были бы невозможны без использования больших и сложных телескопов, расположенных на высокогорных лабораториях и управляемых большим количеством квалифицированных специалистов.




gastroguru © 2017