Искусственная сетчатка глаза изобретение. Искусственная сетчатка для пересадки незрячим

Разработчиком искусственной кремниевой сетчатки (ASR -- Artificial Silicon Retina) является фирма Optobionics. Искусственная кремниевая сетчатка - это микросхема диаметром 2 мм и толщиной 0,025 мм, содержащая приблизительно три с половиной тысячи микроскопических фотодиодов, каждый из которых снабжен собственным стимулирующим электродом. Фотодиоды преобразуют свет в электрические импульсы, выводящиеся на стимулирующие электроды и возбуждающие зрительные нервные окончания. Искусственная сетчатка осуществляет имитацию работы глаза на уровне фоторецепторного слоя. Параллельно с вживлением искусственной сетчатки пациенту устанавливается контактная линза, обеспечивающая фокусировку света именно на нее.

Предложенная американскими исследователями в 2006 г., японскими - в 2007 г. искусственная сетчатка представляет собой тончайшую алюминиевую матрицу с полупроводниковыми элементами из кремния. Чип имеет размеры 3,5 х 3,3 миллиметра и содержит 5760 кремниевых фототранзисторов, которые играют роль светочувствительных нейронов в живой сетчатке. Эти транзисторы связаны с другими 3600 транзисторами, которые подражают нервным клеткам сетчатки, осуществляющим предварительную обработку зрительной информации перед отправкой в мозг.

Новый чип хорошо приспосабливается к изменениям в яркости и контрастности наблюдаемой сцены, а также прекрасно воспринимает движущиеся предметы, выделяя их на неподвижном фоне. Однако перед началом клинических испытаний американские новаторы намерены доработать свой проект - уменьшить размеры чипа и снизить его энергопотребление.

По принципу действия искусственная сетчатка напоминает настоящую: при попадании лучей света в полупроводниках образуется электрическое напряжение, которое в качестве зрительного сигнала должно передаваться в мозг и восприниматься в виде изображения.

В 2009 г. американским исследователям удалось связать нервные клетки с биосовместимой пленкой, вырабатывающей под действием света слабый электрический ток. Основа искусственной сетчатки – тонкая пленка, представляющая собой «бутерброд» из двух слоев: слоя наночастиц теллурида ртути и положительно заряженного слоя полимера PDDA. Оба слоя ученые соединили с помощью специального клея и нанесли на поверхность «бутерброда» биосовместимое аминокислотное покрытие, чтобы нервные клетки могли без проблем взаимодействовать с пленкой. На пленке ученые разместили культуру нейронов. Как только фотоны начали попадать на ее поверхность, в пленке наночастицы абсорбировали фотоны, производя при этом электроны, проходящие через слой полимера PDDA, вырабатывающего слабый электрический ток. Как только ток доходил до клеточной мембраны нейронов, происходил процесс ее деполяризации, и начиналось распространение нервного сигнала, свидетельствующее о наличие в этой области пленки света.

Ранее учеными уже были достигнуты определенные успехи в области стимуляции нейронов через кремниевые интерфейсы. Однако той точности в детекции света и его интенсивности, какую предоставляет пленка с наночастицами, до сих пор не удавалось достичь. Искусственная сетчатка, созданная на базе открытия ученых, сможет даже воспроизводить цветовую насыщенность объектов, не говоря уже о высоком разрешении. Также сетчатка биологически совместима с тканями человека, благодаря использованию полимеров. Кремниевые же аналоги напротив, труднее приспособить для полноценной работы в теле человека. Еще одна революционная особенность искусственной сетчатки – то, что она не зависит от внешних источников питания и «включается» сразу же после попадания на нее света

МОСКВА, 13 мая - РИА Новости. Американские биотехнологи создали прототип искусственной сетчатки глаза, который не требует системы питания, и работает на энергии инфракрасного излучения, говорится в статье, опубликованной в журнале Nature Photonics.

На сегодняшний день ученые во всем мире разрабатывают несколько видов имплантатов, в теории способных вернуть зрение, утерянное в результате дегенеративных болезней или происшествий. В одних случаях биологи экспериментируют со стволовыми клетками или отдельными клетками сетчатки, в других - физики и биотехнологи пытаются приспособить различные электронные приборы к работе с мозгом человека и животных. Но до сих пор ни в одном исследовании не было достигнуто существенных успехов.

Кибер-глаз

Группа ученых под руководством Джеймса Лаудина (James Loudin) из Стэнфордского университета (США) разработала новый тип электронной сетчатки глаза, пригодной для получения изображения высокой четкости и не требующей внешнего источника питания - основного препятствия на пути развития подобных технологий.

"Наше изобретение работает примерно так же, как солнечные батареи на крыше дома, преобразуя свет в электрические импульсы. Однако в нашем случае электричество питает не "холодильник", а направляется в сетчатку в качестве сигнала", - пояснил один из участников группы Дэниел Паланкер (Daniel Palanker).

Искусственная сетчатка глаза Лаудина и его коллег представляет собой набор из множества микроскопических единичных кремниевых пластинок, объединяющих в себе светочувствительный элемент, генератор электричества, а также некоторые другие элементы. Для работы этой сетчатки необходимы специальные очки со встроенной видеокамерой и карманный компьютер, обрабатывающий изображение.

Данное устройство работает следующим образом: камера в очках непрерывно преобразует свет в порции электронных импульсов. Каждый "кадр" обрабатывается на компьютере, делится на две половинки - для правого и левого глаза и передается в инфракрасные излучатели на обратной стороне линз очков. Очки испускают короткие импульсы инфракрасного излучения, которое активирует фотодатчики на сетчатке глаза и заставляет их передавать электрические импульсы, кодирующие картинку, в оптические нейроны.

"Современные имплантаты очень громоздкие, и операции по вставке всех необходимых компонентов в глаз невероятно сложны. В нашем случае хирург должен сделать лишь один небольшой надрез на сетчатке и погрузить под нее фоточувствительный компонент устройства", - продолжил Паланкер.

Инфракрасное прозрение

По словам ученых, использование инфракрасного света для передачи информации обладает двумя ключевыми преимуществами. Во-первых, он позволяет наращивать мощность импульса до очень высоких значений, не вызывая боль в живых клетках сетчатки, так как светочувствительные клетки не реагируют на инфракрасное излучение. Во-вторых, высокая мощность излучения улучшает четкость изображения в тех случаях, когда нейроны под сетчаткой сильно повреждены или слабо реагируют на электрические импульсы.

Ученые проверили работу своего изобретения на сетчатках глаза и нервной ткани, взятых у зрячих и у слепых крыс. В этом эксперименте они прикрепляли фотоэлементы к небольшим кусочкам сетчатки, подключали электроды к прилегающим к ней нейронам и следили, начинают ли они испускать импульсы при облучении видимым и инфракрасным светом.

Американские ученые изучали нейронный код клеток сетчатки у мышей. В результате были полученные данные, которые использовали при создании искусственного глаза. Это устройство потенциально может восстановить зрения слепым мышам. Другие ученые таким же образом изучали код сетчатки у обезьян. Оказалось, что структура и нейронная активность ее во многом схожа с человеческой. Авторы этих работ считают, что эти исследования помогут создать устройство, которое после тестирования поможет слепым людям вновь обрести зрение.

Важно отметить, что по задумке исследователей, искусственная сетчатка поможет видеть не только контуры предметов, но способна даже восстановить зрительную функцию в полном объеме. То есть ранее слепой пациент сможет различать мелкие детали, например, черты лица собеседника. В настоящий момент исследование находится на стадии апробации на животных, которые могут различать движущиеся предметы.

Основной задачей ученых на этом этапе является создание очков или устройства в виде обруча, при помощи которых внешний свет будет собираться и преобразовываться в специфический электронный код. Далее этот код в центральных структурах мозга будет трансформироваться в изображение.

Заболевания сетчатки стоят на первом месте среди причин слепоты. Однако, даже при повреждении всех фоторецепторных клеток, зрительный нерв обычно не повреждается, то есть сохранен нервный выходной путь глазного яблока. Современные протезы применяют этот факт. При этом в глаз слепого человека имплантируют специальные электроды. Они стимулируют ганглиозные нервные клетки. Но при этом можно получить только расплывчатую картинку, то есть человек воспринимает очертания предметов.

Еще одним альтернативным методом лечения слепоты является стимуляция клеток посредством светочувствительных белков. Их вводят в сетчатку глазного яблока с применением методов генной терапии. При попадании в сетчатки, эти белки стимулируют одновременно большое количество ганглиозных клеток.

Однако, для формирования четкого изображения, необходимо установить код сетчатки, то есть тот путь преобразования света в электрический импульс, который использует природа. В противном случае сформированные импульсы будут непонятны нейронам мозга и построение четкого изображения станет невозможным.

Сначала ученые пытали получить этот код, используя простые предметы, к которым относят, например, геометрические фигуры. Доктор неврологии Шейла Ниренберг предположила, что код сетчатки должен быть однотипным как для построения простых геометрических фигур, так и для создания более сложных картин (человеческие лица, пейзажи). Во время работы над этой теорией Ш. Ниренберг поняла, что гипотеза однотипности подходит для протезирования сетчатки. Она провела простой эксперимент, во время которого мини-проектор, которым управлял расшифрованный код, посылал электрические импульсы в ганглиозные клетки мышей. В эти клетки при помощи методик генной инженерии предварительно были встроены светочувствительные белки.

При анализе результатов, которые получены в серии экспериментов, было установлено, что качество зрения мыши, которой был имплантирован этот проектор, ничем не отличается от зрительной функции здорового грызуна.

Эта инновационная технология дает надежду огромному количеству пациентов с нарушением зрения. В связи с тем, что лекарственная терапия помогает лишь небольшой части ослепших людей, протез сетчатки будет очень востребован в клинической практике.

Немецкие ученые разработали имплантируемую искусственную сетчатку глаза.

В эксперименте она частично вернула трем пациентам, ослепшим в результате наследственной дистрофии сетчатки, пишет The Daily Telegraph.

Предыдущие устройства с подобным предназначением представляли собой камеру и процессор, которые нужно носить наподобие очков. Бионический имплантат, разработанный фирмой Retinal Implant AG совместно с Институтом офтальмологических исследований при Университете Тюбингена, вживляется прямо под сетчатку и использует оптический аппарат глаза. Таким образом, он является непосредственной заменой утраченных световых рецепторов.

Получаемое с помощью бионической сетчатки черно-белое изображение стабильно и соответствует движениям глазного яблока.

Трое пациентов, принявших участие в испытаниях прибора, через несколько дней после операции смогли различать формы объектов. У одного из них зрение улучшилось настолько, что он начал свободно ходить по помещению, подходить к людям, видеть стрелки часов и различать семь оттенков серого цвета.

По словам профессора Эберхарта Цреннера (Eberhart Zrenner), возглавляющего Глазную больницу Университета Тюбингена, пилотные испытания убедительно доказали, что имплантат способен восстановить зрение людей с дистрофией сетчатки в достаточном для повседневной жизни объеме. Правда, отметил он, внедрение устройства в клиническую практику займет немало времени.

Бионическую сетчатку, по мнению ученых, можно будет применять при слепоте, вызванной пигментным ретинитом и другими дистрофическими заболеваниями сетчатки.

28 Апреля 2015

Исследователи медицинской школы Стэндфордского университета, работающие под руководством профессора Даниэля Паланкера (Daniel Palanker), разработали беспроводной сетчаточный имплантат, который в будущем позволит восстанавливать зрение в пять лучше, чем существующие устройства. Результаты исследований на крысах свидетельствуют о способности нового устройства обеспечивать функциональное зрение пациентам с дегенеративными заболеваниями сетчатки, такими как пигментная дистрофия сетчатки и макулярная дегенерация.

Дегенеративные заболевания сетчатки приводят к разрушению фоторецепторов – так называемых палочек и колбочек, – тогда как остальные части глаза, как правило, сохраняются в хорошем состоянии. Новый имплантат использует электрическую возбудимость одной из популяций сетчаточных нейронов, известных как биполярные клетки. Эти клетки обрабатывают поступающие с фоторецепторов сигналы до того, как они достигают ганглионарных клеток, отправляющих зрительную информацию в головной мозг. Стимулируя биполярные клетки, имплантат пользуется важными естественными свойствами нейронной системы сетчатки, что обеспечивает получение более детализованных изображений, по сравнению с устройствами, не воздействующими на эти клетки.

Изготавливаемый из оксида кремния имплантат состоит из шестиугольных фотоэлектрических пикселей, конвертирующих световое излучение, испускаемое надеваемыми на глаза пациента специальными очками, в электрический ток. Эти электрические импульсы стимулируют биполярные клетки сетчатки, запуская достигающий головного мозга нейронный каскад.

назад

Читать также:

06 Апреля 2015

Как выглядят магнитные волны?

Чип твердотельного компаса, передающий сигналы в области коры головного мозга слепой крысы, отвечающие за обработку визуальной информации, позволил животному «видеть» геомагнитные поля.

читать 20 Июня 2013

Беспроводной протез сетчатки

Биотехнологи из Стэнфордского университета успешно пересадили в глаза крыс протезы сетчатки, которые обходятся без источника питания и требуют минимального хирургического вмешательства для имплантации.

читать 22 Февраля 2013

Электронные сетчатки совершенствуются

Беспроводная бионическая сетчатка Alpha IMS работает без внешней камеры, обеспечивая свободное движение глаз, и подаёт сигналы от 1500 пикселей на близлежащие нейронные слои сетчатки и на зрительный нерв, полностью имитируя работу клеток-фоторецепторов.

читать 18 Февраля 2013

Первая электронная сетчатка выходит на рынок США

FDA одобрило первую искусственную сетчатку – имплантируемое устройство с некоторыми функциями сетчатки, которое поможет людям, потерявшим зрение вследствие генетического заболевания – пигментного ретинита.

читать 14 Мая 2012

Оптоэлектронная сетчатка без батареек

Для создания искусственной сетчатки ученые решили использовать фотоэлементы, активируемые инфракрасным лучом, что позволило совместить передачу визуальной информации с передачей энергии и упростить устройство имплантата.



gastroguru © 2017