Особенности строения и функций гипоталамуса. Функции промежуточного мозга

Промежуточный мозг располагается под мозолистым телом и сводом, срастаясь по бокам с полушариями большого мозга.

К нему относятся:

Таламус (зрительные бугры),

Эпиталамус (надбугорная область),

Метаталамус (забугорная область) и

Гипоталамус (подбугорная область).

Полостью промежуточного мозга является III желудочек.

Таламус представляет собой парные скопления серого вещества, покрытые слоем белого вещества, имеющие яйцевидную форму.

В таламусе различают три основные группы ядер: передние, латеральные и медиальные . В латеральных ядрах происходит переключение всех чувствительных путей, направляющихся к коре больших полушарий.

В эпиталамусе лежит верхний придаток мозга - эпифиз, или шишковидное тело, подвешенное на двух поводках в углублении между верхними холмиками пластинки крыши.

Метаталамус представлен медиальными и латеральными коленчатыми телами. Они соединенными пучками волокон (ручки холмиков) с верхними и нижними холмиками пластинки крыши. В них лежат ядра, являющиеся рефлекторными центрами зрения и слуха.

Гипоталамус располагается вентральнее зрительного бугра и включает в себя собственно подбугорную область и ряд образований, расположенных на основании мозга.

Третий желудочек расположен по средней линии и представляет собой узкую вертикальную щель.

Главными образованиями промежуточного мозга являются таламус (зрительный бугор) и гипоталамус (подбугорная область).

Таламус - чувствительное ядро подкорки. Его называют "коллектором чувствительности", так как к нему сходятся афферентные (чувствительные) пути от всех рецепторов, исключая обонятельные рецепторы. Здесь находится третий нейрон афферентных путей, отростки которого заканчиваются в чувствительных зонах коры.

Главной функцией таламуса является интеграция (объединение) всех видов чувствительности. Для анализа внешней среды недостаточно сигналов от отдельных рецепторов. Здесь происходит сопоставление информации, получаемой по различным каналам связи, и оценка ее биологического значения. В зрительном бугре насчитывается 40 пар ядер, которые подразделяются на специфические (на нейронах этих ядер заканчиваются восходящие афферентные пути), неспецифические (ядра ретикулярной формации) и ассоциативные. Через ассоциативные ядра таламус связан со всеми двигательными ядрами подкорки - полосатым телом, бледным шаром, гипоталамусом и с ядрами среднего и продолговатого мозга.

Изучение функций зрительного бугра проводится путем перерезок, раздражения и разрушения. Кошка, у которой разрез сделан выше промежуточного мозга, резко отличается от кошки, у которой высшим отделом центральной нервной системы является средний мозг. Она не только поднимается и ходит, т. е. выполняет сложно координированные движения, но еще проявляет все признаки эмоциональных реакций. Легкое прикосновение вызывает злобную реакцию. Кошка бьет хвостом, скалит зубы, рычит, кусается, выпускает когти.

У человека зрительный бугор играет существенную роль в эмоциональном поведении, характеризующемся своеобразной мимикой, жестами и сдвигами функций внутренних органов. При эмоциональных реакциях повышается давление, учащаются пульс, дыхание, расширяются зрачки.

Мимическая реакция человека является врожденной. Если пощекотать нос плода 5 - 6 месяцев можно видеть типичную гримасу неудовольствия (П. К. Анохин). При раздражении зрительного бугра у животных возникают двигательные и болевые реакции - визг, ворчание. Эффект можно объяснить тем, что импульсы от зрительных бугров легко переходят на связанные с ними двигательные ядра подкорки.

В клинике симптомами поражения зрительных бугров являются сильная головная боль, расстройства сна, нарушения чувствительности, как в сторону повышения, так и понижения, нарушения движений, их точности, соразмерности, возникновение насильственных непроизвольных движений.

Гипоталамус является высшим подкорковым центром вегетативной нервной системы. В этой области расположены центры, регулирующие все вегетативные функции, обеспечивающие постоянство внутренней среды организма, а также регулирующие жировой, белковый, углеводный и водно-солевой обмен.

В деятельности вегетативной нервной системы гипоталамус играет такую же важную роль, какую играют красные ядра среднего мозга в регуляции скелетно-моторных функций соматической нервной системы.

Самые ранние исследования функций гипоталамуса принадлежат - Клоду Бернару. Он обнаружил, что укол в промежуточный мозг кролика вызывает повышение температуры тела почти на 3°С. Этот классический опыт, открывший локализацию центра терморегуляции в гипоталамусе, получил название теплового укола. После разрушения гипоталамуса животное становится пойкилотермным, т. е. теряет способность удерживать постоянство температуры тела. В холодной комнате температура тела понижается, а в жаркой повышается.

Позднее было установлено, что почти все органы, иннервируемые вегетативной нервной системой, могут быть активированы раздражением подбугорной области. Иными словами, все эффекты, которые можно получить при раздражении симпатических и парасимпатических нервов, получаются при раздражении гипоталамуса.

В настоящее время для раздражения различных структур мозга широко применяется метод вживления электродов. С помощью особой, так называемой стереотаксической техники, через трепанационное отверстие в черепе вводят электроды в любой заданный участок мозга. Электроды изолированы на всем протяжении, свободен только их кончик. Включая электроды в цепь, можно узко локально раздражать те или иные зоны.

При раздражении передних отделов гипоталамуса возникают парасимпатические эффекты - усиление движений кишечника, отделение пищеварительных соков, замедление сокращений сердца и др.

При раздражении задних отделов наблюдаются симпатические эффекты - учащение сердцебиения, сужение сосудов, повышение температуры тела и др. Следовательно, в передних отделах подбугорной области располагаются парасимпатические центры, а в задних - симпатические.

Так как раздражение при помощи вживленных электродов производится на животном, без применения анестезии, становится возможным судить о поведении животного. В опытах Андерсена на козе с вживленными электродами был найден центр, раздражение которого вызывает неутолимую жажду - центр жажды. При его раздражении коза могла выпивать до 10 л воды. Раздражением других участков можно было, заставить есть сытое животное (центр голода).

Широкую известность получили опыты испанского ученого Дельгадо на быке с электродом, вживленным в «центр страха». Когда на арене разъяренный бык бросался на тореадора, включали раздражение, и бык отступал с ясно выраженными признаками страха.

Американский исследователь Д. Олдз предложил модифицировать метод - предоставить возможность животному самому замыкать электроды, предполагая, что неприятных раздражений животное будет избегать и, наоборот, стремиться повторять приятные.

Опыты показали, что имеются структуры, раздражение которых вызывает безудержное стремление к повторению. Крысы доводили себя до истощения, нажимая на рычаг до 14000 раз! Кроме того, обнаружены структуры, раздражение которых, по-видимому, вызывает крайне неприятное ощущение, так как крыса второй раз избегает нажать на рычаг повторно и убегает от него. Первый центр, очевидно, является центром удовольствия, а второй - центром неудовольствия.

Чрезвычайно важным для понимания функций гипоталамуса явилось открытие в этом отделе мозга рецепторов, улавливающих изменения температуры крови (терморецепторы), осмотического давления (осморецепторы) и состава крови (глюкорецепторы).

С рецепторов, обращенных в кровь, возникают рефлексы, направленные на поддержание постоянства внутренней среды организма - гомеостаза. "Голодная кровь", раздражая глюко-рецепторы, возбуждает пищевой центр: возникают пищевые реакции, направленные на поиск и поедание пищи.

Одним из частых проявлений заболевания гипоталамуса в клинике является нарушение водно-солевого обмена, проявляющееся в выделении большого количества мочи с низкой плотностью. Заболевание носит название несахарного мочеизнурения или несахарного диабета.

Подбугорная область тесно связана с деятельностью гипофиза. В крупных нейронах надзрительного и околожелудочкового ядер гипофиза образуются гормоны - вазопрессин и окситоцин. По аксонам гормоны стекают к гипофизу, где накапливаются, а затем поступают в кровь.

Иное взаимоотношение между гипоталамусом и передней долей гипофиза. Сосуды, окружающие ядра гипоталамуса, объединяются в систему вен, которые спускаются к передней доле гипофиза и здесь распадаются на капилляры. С кровью к гипофизу поступают вещества - релизинг-факторы, или освобождающие факторы, стимулирующие образование гормонов в передней его доле.

Гипофиз тесно связан с гипоталамусом структурно и функционально. Задние отделы гипофиза (нейрогипофиз) накапливают гормоны, продуцируемые гипоталамусом и регулирующие водно-солевое равновесие, контролирующие функции матки и молочных желез.

Передние отделы гипофиза (аденогипофиз) вырабатывают:

адренокортикотропный гормон - АКТГ, который стимулирует работу желез надпочечников;

тиреотропный гормон - стимулирует рост и секрецию щитовидной железы;

гонадотропный гормон - регулирует активность половых желез;

соматотропный гормон - обеспечивает развитие костной системы; пролактин - стимулирует рост и активность молочных желез и др.

В гипоталамусе и гипофизе образуются также нейрорегуляторные энкефалины, эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса.

Введение

Таламус (зрительный бугор)

Гипоталамус

Заключение

Медиальное коленчатое тело находится позади подушки таламуса; вместе с нижними холмиками пластинки крыши среднего мозга оно является подкорковым центром слухового анализатора.

Латеральное коленчатое тело располагается книзу от подушки таламуса. Вместе с верхними бугорками четверохолмия оно образует подкорковый центр зрительного анализатора.

Эпиталамус (надталамическая область) включает шишковидное тело (эпифиз), поводки и треугольники поводков . В треугольниках поводков залегают ядра, относящиеся к обонятельному анализатору. Поводки отходят от треугольников поводков, идут каудально, соединяются посредством спайки и переходят в шишковидное тело. Последнее как бы подвешено на них и располагается между верхними бугорками четверохолмия. Шишковидное тело является железой внутренней секреции. Его функции полностью не установлены, предполагается, что оно регулирует наступление полового созревания.

Таламус (зрительный бугор)

Общее строение и расположение таламуса.

Рисунок 1. Промежуточный мозг на сагиттальном разрезе.

Толща серого вещества таламуса разделена вертикальной Y-образной прослойкой (пластинкой) белого вещества на три части - переднюю, медиальную и латеральную.

Медиальная поверхность таламуса хорошо видна на сагиттальном (сагиттальный - стреловидный (лат. "sagitta" - стрела), делящей на симметричные правую и левую половины) разрезе мозга (рис.1). Медиальная (т.е. располагающаяся ближе к середине) поверхность правого и левого таламусов, обращенные друг к другу, образуют боковые стенки III мозгового желудочка (полость промежуточного мозга) посередине они соединены между собой межталамическим сращением .

Передняя (нижняя) поверхность таламусов сращена с гипоталамусом, через нее с каудальной стороны (т.е. находящейся ближе к нижней части тела) в промежуточный мозг входят проводящие пути из ножек мозга.

Латеральная ( т.е. боковая) поверхность таламуса граничит с внутренней капсулой - слоем белого вещества полушарий головного мозга, состоящего из проекционных волокон, соединяющих кору полушарий с нижележащими мозговыми структурами.

В каждой из этих частей таламуса находится несколько групп таламических ядер . Всего в таламусе содержится от 40 до 150 специализированных ядер .

Функциональное значение ядер таламуса.

По топографии ядра таламуса объединяют в 8 основных групп:

1. переднюю группу;

2. медиодорсальную группу;

3. группу ядер средней линии;

4. дорсолатеральную группу;

5. вентролатеральную группу;

6. вентральную заднемедиальную группу;

7. заднюю группу (ядра подушки таламуса);

8. интраламинарную группу.

Ядра таламуса делят на сенсорные ( специфические и неспецифические), моторные и ассоциативные . Рассмотрим основные группы ядер таламуса, необходимые для понимания его функциональной роли в передаче сенсорной информации в кору больших полушарий.

В передней части таламуса располагается передняя группа таламических ядер ( рис.2). Наиболее крупные из них - передневентральное ядро и переднемедиальное ядро. Они получают афферентные волокна от сосцевидных тел - обонятельного центра промежуточного мозга. Эфферентные волокна (нисходящие, т.е. выносящие импульсы из мозга) от передних ядер направляются к поясной извилине коры больших полушарий.

Передняя группа таламических ядер и связанные с нею структуры являются важным компонентом лимбической системы мозга, управляющей психоэмоциональным поведением .

Рис. 2. Топография ядер таламуса

В медиальной части таламуса различают медиодорсалъное ядро и группу ядер средней линии.

Медиодорсальное ядро имеет двусторонние связи с обонятельной корой лобной доли и поясной извилиной больших полушарий, миндалевидным телом и переднемедиальным ядром таламуса. Функционально оно тесно связано также с лимбической системой и имеет двусторонние связи с корой теменной, височной и островковой долей мозга.

Медиодорсальное ядро участвует в реализации высших психических процессов. Его разрушение приводит к снижению беспокойства, тревожности, напряженности, агрессивности, устранению навязчивых мыслей.

Ядра средней линии многочисленны и занимают наиболее медиальное положение в таламусе. Они получают афферентные (т.е. восходящие) волокна от гипоталамуса, от ядер шва, голубого пятна ретикулярной формации ствола мозга и частично от спинно-таламических путей в составе медиальной петли. Эфферентные волокна от ядер средней линии направляются к гиппокампу, миндалевидному телу и поясной извилине больших полушарий, входящих в состав лимбической системы. Связи с корой больших полушарий двусторонние.

Ядра средней линии играют важную роль в процессах пробуждения и активации коры больших полушарий, а также в обеспечении процессов памяти.

В латеральной (т.е. боковой) части таламуса располагаются дорсолатералъная, вентролатеральная, вентральная заднемедиальная и задняя группы ядер.

Ядра дорсолатералъной группы относительно мало изучены. Известно, что они причастны к системе восприятия боли.

Ядра вентролатералъной группы анатомически и функционально различаются между собой. Задние ядра вентролатеральной группы часто рассматриваются как одно вентролатеральное ядро таламуса. Эта группа получает волокна восходящего пути общей чувствительности в составе медиальной петли. Сюда приходят также волокна вкусовой чувствительности и волокна от вестибулярных ядер. Эфферентные волокна, начинающиеся от ядер вентролатеральной группы, направляются в кору теменной доли больших полушарий, куда проводят соматосенсорную информацию от всего тела.

К ядрам задней группы (ядра подушки таламуса) идут афферентные волокна от верхних холмиков четверохолмия и волокна в составе зрительных трактов. Эфферентные волокна широко распространяются в коре лобной, теменной, затылочной, височной и лимбической долей больших полушарий.

Ядерные центры подушки таламуса причастны к комплексному анализу различных сенсорных раздражителей. Они играют значительную роль в перцептивной (связанной с восприятием) и когнитивной (познавательной, мыслительной) деятельности мозга, а также в процессах памяти - хранения и воспроизведения информации.

Интраламинарная группа ядер таламуса лежит в толще вертикальной Y-образной прослойки белого вещества. Интраламинарные ядра взаимосвязаны с базальными ядрами, зубчатым ядром мозжечка и корой больших полушарий.

Эти ядра играют важную роль в активационной системе мозга. Повреждение интраламинарных ядер в обоих таламусах приводит к резкому снижению двигательной активности, а также апатии и разрушению мотивационной структуры личности.

Кора больших полушарий благодаря двусторонним связям с ядрами таламуса способна оказывать регулирующее воздействие на их функциональную активность.

Таким образом, основными функциями таламуса являются:

переработка сенсорной информации от рецепторов и подкорковых переключающих центров с последующей передачей её коре;

участие в регуляции движений;

обеспечение связи и интеграции различных отделов мозга .

Гипоталамус

Общее строение и расположение гипоталамуса.

Гипоталамус ( hypothalamus) представляет собой вентральный отдел (т.е. брюшной) промежуточного мозга. В его состав входит комплекс образований, расположенных под III желудочком. Гипоталамус спереди ограничивается зрительным перекрестом ( хиазмой), латерально - передней частью субталамуса, внутренней капсулой и зрительными трактами, отходящими от хиазмы. Сзади гипоталамус продолжается в покрышку среднего мозга. К гипоталамусу относят сосцевидные тела, серый бугор и зрительный перекрест. Сосцевидные тела располагаются по бокам средней линии кпереди от заднего продырявленного вещества. Это образования неправильной шаровидной формы белого цвета. Спереди от серого бугра располагается зрительный перекрёст . В нём происходит переход на противоположную сторону части волокон зрительного нерва, идущей от медиальной половины сетчатки. После перекрёста формируются зрительные тракты.

Серый бугор располагается кпереди от сосцевидных тел, между зрительными трактами. Серый бугор является полым выступом нижней стенки III желудочка, образованной тонкой пластинкой серого вещества. Верхушка серого бугра вытянута в узкую полую воронку , на конце которой находится гипофиз [ 4; 18].

Гипофиз: строение и функционирование

Гипофиз (hypophysis) - железа внутренней секреции, он располагается в специальном углублении основания черепа, "турецком седле" и при помощи ножки связан с основанием мозга. В гипофизе выделяют переднюю долю (аденогипофиз - железистый гипофиз ) и заднюю долю (нейрогипофиз ).

Задняя доля, или нейрогипофиз, состоит из нейроглиальных клеток и является продолжением воронки гипоталамуса. Более крупная доля - аденогипофиз, построена из железистых клеток. Благодаря тесному взаимодействию гипоталамуса с гипофизом в промежуточном мозге функционирует единая гипиталамо-гипофизарная система, управляющая работой всех эндокринных желез, а с их помощью - вегетативными функциями организма (рис.3).

Рисунок 3. Гипофиз и его влияние на другие эндокринные железы

В сером веществе гипоталамуса выделяют 32 пары ядер. Взаимодействие с гипофизом осуществляется посредством выделяемых ядрами гипоталамуса нейрогормонов - рилизинг-гормонов . По системе кровеносных сосудов они попадают в переднюю долю гипофиза (аденогипофиз), где способствуют высвобождению тропных гормонов, стимулирующих синтез специфических гормонов в других эндокринных железах.

В передней доле гипофиза вырабатываются тропные гормоны (тиреотропный гормон - тиреотропин, адренокортикотропный гормон - кортикотропин и гонадотропные гормоны - гонадотропины) и эффекторные гормоны (гормоны роста - соматотропин и пролактин) .

Гормоны передней доли гипофиза

Тиреотропный гормон (тиреотропин) стимулирует функцию щитовидной железы. Если удалить или разрушить гипофиз у животных, то наступает атрофия щитовидной железы, а введение тиреотропина восстанавливает ее функции.

Адренокортикотропный гормон (кортикотропин) стимулирует функцию пучковой зоны коры надпочечников, в которой образуются гормоны глюкокортикоиды. В меньшей степени выражено влияние гормона на клубочковую и сетчатую зоны. Удаление гипофиза у животных приводит к атрофии коркового слоя надпочечников. Атрофические процессы захватывают все зоны коры надпочечников, но наиболее глубокие изменения происходят в клетках сетчатой и пучковой зонах. Вненадпочечниковое действие кортикотропина выражается в стимуляции процессов липолиза, усилении пигментации, анаболическом влиянии.

Гонадотропные гормоны (гонадотропины). Фолликулостимулирующий гормон (фоллитропин) стимулирует рост везикулярного фолликула в яичнике. Влияние фоллитропина на образование женских половых гормонов (эстрогенов) небольшое. Этот гормон имеется как у женщин, так и у мужчин. У мужчин под влиянием фоллитропина происходит образование половых клеток (сперматозоидов). Лютеинизирующий гормон (лютропин) необходим для роста везикулярного фолликула яичника на стадиях, предшествующих овуляции, и для самой овуляции (разрыва оболочки созревшего фолликула и выхода из него яйцеклетки), образования желтого тела на месте лопнувшего фолликула. Лютропин стимулирует образование женских половых гормонов - эстрогенов. Однако для того чтобы этот гормон осуществил свое действие на яичник, необходимо предварительное длительное действие фоллитропина. Лютропин стимулирует выработку прогестерона желтым телом. Лютропин имеется как у женщин, так и у мужчин. У мужчин он способствует образованию мужских половых гормонов - андрогенов.

Эффекторные:

Гормон роста (соматотропин) стимулирует рост организма путем усиления образования белка. Под влиянием роста эпифизарных хрящей в длинных костях верхних и нижних конечностей происходит рост костей в длину. Гормон роста усиливает секрецию инсулина посредством соматомединов, образующихся в печени.

Пролактин стимулирует образование молока в альвеолах молочных желез. Свое действие на молочные железы пролактин оказывает после предварительного действия на них женских половых гормонов прогестерона и эстрогенов. Акт сосания стимулирует образование и выделение пролактина. Пролактин обладает также и лютеотропным действием (способствует продолжительному функционированию желтого тела и образованию им гормона прогестерона) .

Процессы в задней доле гипофиза

В задней доле гипофиза гормоны не вырабатываются. Сюда поступают неактивные гормоны, которые синтезируются в паравентрикулярном и супраоптическом ядрах гипоталамуса.

В нейронах паравентрикулярного ядра образуется преимущественно гормон окситоцин, а в нейронах супраоптического ядра - вазопрессин (антидиуретический гормон). Эти гормоны накапливаются в клетках задней доли гипофиза, где они превращаются в активные гормоны.

Вазопрессин (антидиуретический гормон) играет важную роль в процессах мочеобразования и в меньшей степени в регуляции тонуса кровеносных сосудов. Вазопрессин, или антидиуретический гормон - АДГ (диурез - выделение мочи) - стимулирует обратное всасывание (резорбцию) воды в почечных канальцах.

Окситоцин (оцитонин) усиливает сокращение матки. Ее сокращение резко усиливается, если она предварительно находилась под действием женских половых гормонов эстрогенов. Во время беременности окситоцин не влияет на матку, так как под влиянием гормона желтого тела прогестерона она становится нечувствительной к окситоцину. Механическое раздражение шейки матки вызывает отделение окситоцина рефлекторно. Окситоцин обладает способностью стимулировать также выделение молока. Акт сосания рефлекторно способствует выделению окситоцина из нейрогипофиза и выделению молока. В состоянии напряжения организма гипофиз выделяет дополнительное количество АКТГ, стимулирующего выброс адаптивных гормонов корой надпочечников .

Функциональное значение ядер гипоталамуса

В передне-боковой части гипоталамусаразличают переднюю и среднюю группы гипоталамических ядер (рис.4).


Рисунок 4. Топография ядер гипоталамуса

К передней группе относятся супрахиазматические ядра, преоптическое ядро, и самые крупные - супраоптическое и паравентрикулярное ядра.

В ядрах передней группы локализуются:

центр парасимпатического отдела (ПСНС) вегетативной нервной системы.

Стимуляция переднего отдела гипоталамуса приводит к реакциям парасимпатического типа: сужению зрачка, снижению частоты сокращений сердца, расширению просвета сосудов, падению артериального давления, усилению перистальтики (т.е. волнообразного сокращения стенок полых трубчатых органов, способствующего продвижению их содержимого к выходным отверстиям кишечника);

центр теплоотдачи. Разрушение переднего отдела сопровождается необратимым повышением температуры тела;

центр жажды;

нейросекреторные клетки, продуцирующие вазопрессин (супраоптическое ядро ) и окситоцин (паравентрикулярное ядро ). В нейронах паравентрикулярного и супраоптических ядер образуется нейросекрет, который по их аксонам перемещается в задний отдел гипофиза (нейрогипофиз), где высвобождается в виде нейрогормонов - вазопрессина и окситоцина , поступающих в кровь.

Повреждение передних ядер гипоталамуса приводит к прекращению выделения вазопрессина, вследствие чего развивается несахарный диабет . Окситоцин оказывает стимулирующее действие на гладкую мускулатуру внутренних органов, например матки. В целом от этих гормонов зависит водносолевой баланс организма.

В преоптическом ядре образуется один из рилизинг-гормонов - люлиберин, стимулирующий выработку в аденогипофизе лютеинизирующего гормона, контролирующего активность половых желез.

Супрахиазматические ядра принимают активное участие в регуляции циклических изменений активности организма - циркадианных, или суточных, биоритмов (например, в чередовании сна и бодрствования).

К средней группе гипоталамических ядер относят дорсомедиальное и вент-ромедиальное ядра, ядро серого бугра и ядро воронки.

В ядрах средней группы локализуются:

центр голода и насыщения. Разрушение вентромедиального ядра гипоталамуса приводит к избыточному потреблению пищи (гиперфагии) и ожирению, а повреждение ядра серою бугра - к снижению аппетита и резкому исхуданию (кахексии);

центр полового поведения;

центр агрессии;

центр удовольствия, играющий важную роль в процессах формирования мотиваций и психоэмоциональных форм поведения;

нейросекреторные клетки, продуцирующие рилизинг-гормоны (либерины и статины), регулирующие продукцию гипофизарных гормонов: соматостатин, соматолиберин, люлиберин, фоллиберин, пролактолиберин, тиреолиберин и др. Через гипоталамо-гипофизарную систему они оказывают влияние на ростовые процессы, скорость физического развития и полового созревания, формирование вторичных половых признаков, функции половой системы, а также на обмен веществ.

Средняя группа ядер контролирует водный, жировой и углеводный обмен, влияет на уровень сахара в крови, ионный баланс организма, проницаемость сосудов и клеточных мембран.

Задняя часть гипоталамусарасположена между серым бугром и задним продырявленным веществом и состоит из правого и левого сосцевидных тел.

В задней части гипоталамуса наиболее крупными ядрами являются: медиальное и латеральное ядра, заднее гипоталамическое ядро .

В ядрах задней группы локализуются:

центр, координирующий активность симпатического отдела (СНС) вегетативной нервной системы (заднее гипоталамическое ядро ). Стимуляция этого ядра приводит к реакциям симпатического типа: расширению зрачка, повышению частоты сокращений сердца и артериального давления, учащению дыхания и уменьшению тонических сокращений кишечника;

центр теплопродукции (заднее гипоталамическое ядро ). Разрушение заднего отдела гипоталамуса вызывает вялость, сонливость и снижение температуры тела;

подкорковые центры обонятельного анализатора. Медиальное и латеральное ядра в каждом сосцевидном теле являются подкорковыми центрами обонятельного анализатора, а также входят в лимбическую систему;

нейросекреторные клетки, продуцирующие рилизинг-гормоны, регулирующие продукцию гипофизарных гормонов .

Особенности кровоснабжения гипоталамуса

Ядра гипоталамуса получают обильное кровоснабжение. Капиллярная сеть гипоталамуса по своей разветвлённости в несколько раз больше, чем в других отделах ЦНС. Одной из особенностей капилляров гипоталамуса является их высокая проницаемость, обусловленная истонченностью стенок капилляров и их фенестрированностью ("окончатостью" - наличие промежутков - "окон" - между смежными эндотелиальными клетками капилляров (от лат. "fenestra " - окно). В результате этого в гипоталамусе слабо выражен гематоэнцефалический барьер (ГЭБ), и нейроны гипоталамуса способны воспринимать изменения состава спинномозговой жидкости и крови (температуру, содержание ионов, наличие и количество гормонов и т.д.).

Функциональное значение гипоталамуса

Гипоталамус является центральным звеном, связующим нервные и гуморальные механизмы регуляции вегетативных функций организма. Управляющая функция гипоталамуса обусловлена способностью его клеток к секреции и аксональному транспорту регуляторных веществ, которые переносится в другие структуры мозга, спинномозговую жидкость, кровь или в гипофиз, изменяя функциональную активность органов-мишеней.

В гипоталамусе выделяют 4 нейроэндокринные системы:

Гипоталамо-экстрагипоталамная система представлена нейросекреторными клетками гипоталамуса, аксоны которых уходят в таламус, структуры лимбической системы, продолговатый мозг. Эти клетки выделяют эндогенные опиоиды, соматостатин и др.

Гипоталамо-аденогипофизарная система связывает ядра заднего гипоталамуса с передней долей гипофиза. По этому пути транспортируются рилизинг-гормоны (либерины и статины). Посредством их гипоталамус регулирует секрецию тропных гормонов аденогипофиза, определяющих секреторную активность желёз внутренней секреции (щитовидной, половых и др.).

Гипоталамо-метагипофизарная система связывает нейросекреторные клетки гипоталамуса с гипофизом. По аксонам этих клеток транспортируются меланостатин и меланолиберин, которые регулируют синтез меланина - пигмента, определяющего окраску кожи, волос, радужки и других тканей организма.

Гипоталамо-нейрогипофизарная система связывает ядра переднего гипоталамуса с задней (железистой) долей гипофиза. По этим аксонам транспортируются вазопрессин и окситоцин, которые накапливаются в задней доле гипофиза и выделяются в кровоток по мере необходимости .

Заключение

Таким образом, дорсальный отдел промежуточного мозга представляет собой филогенетически более молодой таламический мозг, являющийся высшим подкорковым сенсорным центром, в котором переключаются практически все афферентные пути, несущие сенсорную информацию от органов тела и органов чувств к большим полушариям головного мозга. К задачам гипоталамуса относится также управление психоэмоциональным поведением и участие в реализации высших психических и психологических процессов, в частности памяти.

Вентральный отдел - гипоталамус являетсяболее старым в филогенетическом отношении образованием. Гипоталамо-гипофизарная система осуществляет контроль над гуморальной регуляцией водносолевого баланса, обменом веществ и энергии, работой иммунной системы, терморегуляцией, репродуктивной функцией и т.д. Выполняя и этой системе регулирующую роль, гипоталамус является высшим центром, управляющим автономной (вегетативной) нервной системой.

Список литературы

1. Анатомия человека / Под ред. М.Р. Сапина. - М.: Медицина, 1993.

2. Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум поведение. - М.: Мир, 1988.

3. Гистология / Под ред. В.Г. Елисеева. - М.: Медицина, 1983.

4. Привес М.Г., Лысенков Н.К., Бушкович В.И. Анатомия человека. - М.: Медицина, 1985.

5. Синельников Р.Д., Синельников Я.Р. Атлас анатомии человека. - М.: Медицина, 1994.

6. Тишевской И.А. Анатомия центральной нервной системы: Учебное пособие. - Челябинск: Изд-во ЮУрГУ, 2000.

Промежуточный мозг впроцессе эмбриогенеза развивается из переднего мозгового пузыря. Он образует стенки третьего мозгового желудочка. Промежуточный мозг расположен под мозолистым телом и состоит из таламусов, эпиталамуса, метаталамуса и гипоталамуса.

Таламусы (зрительные бугры) представляют собой скопление , имеющего яйцевидную форму. Таламус является крупным подкорковым образованием, через которое в кору проходят разнообразные афферентные пути. Нервные клетки его группируются в большое количество ядер (до 40). Топографически последние разделяют на переднюю, заднюю, срединную, медиальную и латеральную группы. По функции таламические ядра можно дифференцировать на специфические, неспецифические, ассоциативные и моторные.

От специфических ядер информация о характере сенсорных стимулов поступает в строго определенные участки 3-4 слоев коры. Функциональной основной единицей специфических таламических ядер являются «релейные» , которые имеют мало дендритов, длинный и выполняют переключательную функцию. Здесь происходит переключение путей, идущих в кору от кожной, мышечной и других видов чувствительности. Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности.

Неспецифические ядра таламуса связаны со многими участками коры и принимают участие в активизации ее деятельности, их относят к .

Ассоциативные ядра образованы мультиполярными, биполярными нейронами, аксоны которых идут в 1-ый и 2-ой слои, и частично проекционных областей, по пути отдавая в 4 и 5 слои коры, образуя ассоциативные контакты с пирамидными нейронами. Ассоциативные ядра связаны с ядрами полушарий головного мозга, гипоталамусом, средним и . Ассоциативные ядра участвуют в высших интегративных процессах, однако их функции изучены еще недостаточно.

К моторным ядрам таламуса относится вентральное ядро, которое имеет вход от и базальных ганглиев, и одновременно дает проекции в моторную зону коры больших полушарий. Это ядро включено в систему регуляции движений.

Таламус – структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору головного мозга от нейронов , мозжечка. Возможность получить информацию о состоянии множества систем организма позволяет ему участвовать в регуляции и определять организма в целом. Это подтверждается уже тем, что в таламусе около 120 разно функциональных ядер.

Функциональная значимость ядер таламуса определяется не только их проекцией на другие структуры мозга, но и тем, какие структуры посылают к нему свою информацию. В таламус приходят сигналы от зрительной, слуховой, вкусовой, кожной, мышечной систем, от ядер черепно-мозговых нервов, ствола, мозжечка, продолговатого и . В связи с этим таламус фактически является подкорковым чувствительным центром. Отростки нейронов таламуса направляются отчасти к ядрам полосатого тела конечного мозга (в связи с этим таламус рассматривается как чувствительный центр экстропирамидной системы), отчасти к коре большого мозга, образуя таламокортикальные пути.

Таким образом, таламус является подкорковым центром всех видов чувствительности, кроме обонятельного. К нему подходят и переключаются восходящие (афферентные) проводящие пути, по которым передается информация от различных . От таламуса идут нервные волокна к коре большого мозга, составляя таламокортикальные пучки.

Гипоталамус – филогенетический старый отдел промежуточного мозга, который играет важную роль в поддержании постоянства внутренней среды и обеспечении интеграции функций вегетативной, эндокринной и соматической систем. Гипоталамус участвует в образовании дна III желудочка. К гипоталамусу относятся зрительный перекрест, зрительный тракт, серый бугор с воронкой и сосцевидное тело. Структуры гипоталамуса имеют различное происхождение. Из конечного мозга образуется зрительная часть (зрительный перекрест, зрительный тракт, серый бугор с воронкой, нейрогипофиз), а из промежуточного – обонятельная часть (сосцевидное тело и подбугорье).

Зрительный перекрест имеет вид поперечно лежащего валика, образованного волокнами зрительных нервов (II пара), частично переходящими на противоположную сторону. Этот валик с каждой стороны латерально и кзади продолжается в зрительный тракт, который проходит сзади от переднего продырявленного вещества, огибает ножку мозга с латеральной стороны и заканчивается двумя корешками в подкорковых центрах . Более крупный латеральный корешок подходит к латеральному коленчатому телу, а более тонкий медиальный корешок направляется к верхнему холмику крыши .

К передней поверхности зрительного перекреста прилежит и срастается с ним относящаяся к конечному мозгу терминальная (пограничная, или конечная) пластинка. Она замыкает передний отдел продольной щели большого мозга и состоит из тонкого слоя серого вещества, которое в латеральных отделах пластинки продолжается в вещество лобных долей полушарий.

Красное ядро

Передние и задние бугры четверохолмия.

Мозжечок.

Белое вещество мозжечка – проводящие пути мозжечка. Среди БВ находятся ядра мозжечка. В мозжечок поступают сигналы от всех структур, связанных с движением. Там они обрабатываются, затем из мозжечка поступает огромный поток тормозных влияний на СМ.

Средний мозг – четверохолмие, черная субстанция, ножки мозга.

Передние бугры – первичная зрительная зона – формируют ориентировочный рефлекс на зрительный сигнал

Задние бугры – первичная слуховая зона – формируют ориентировочный рефлекс на звуковой сигнал

Функция - сторожевые рефлексы (ориентировочные)

Тонус скелетной мускулатуры

Перераспределение тонуса при изменении позы

Упорядочивать взаимоотношение между мышцами сгибателями и разгибателями

Децереберационная ригидность – повреждение красного ядра, резко повышается возбудимость/тонус более сильных мышц

Черная субстанция – источник дофамина

Тормозная функция базальных ганглиев, не дает возбуждать зоны больших полушарий

Тонус скелетных мышц, отвечающих за тонкие инструментальные движения

Пример дисфункции: болезнь Паркинсона

Таламус – поступают сигналы со всех рецепторов кроме обонятельного, его называют коллектором афферентный импульсов.

Прежде чем попасть в кору, информация поступает в таламус. Если таламус разрушен, то кора не получает эту информацию. Если в коленчатые тела (одни из ядер таламуса) поступают зрительные сигналы, то уходят сразу в затылочную долю коры полушарий. Тоже и со слуховой, только она идет в височную. В таламусе обрабатывается информация и выбирается наиболее адекватная

В таламусе десятки ядер, которые делятся на 2 группы: специфические и неспецифические.

Когда поступает информация в специфические ядра таламуса, то в коре возникают вызванные ответы, но ответы возникают в строго выбранных участках полушарий. Информация от неспецифических ядер таламуса поступает ко всей коре больших полушарий. Это происходит, чтобы повысить возбудимость всей коры, чтобы она более четко воспринимала специфическую информацию.

Адекватная боль возникает с участием лобной, теменной коры, таламуса. Таламус - высший центр болевой чувствительности. При разрушении одних ядер таламуса возникает невыносимая боль, при разрушении других ядер полностью теряется болевая чувствительность.

Неспецифические ядра по функции очень похожи на ретикулярную формацию, их еще называют ретикулярными ядрами.

И.И. Сеченов 1864 – открыл ретикулярную формацию, опыты на лягушках. Доказал, что в ЦНС наряду с явлениями возбуждения, есть явления торможения.


Ретикулярная формация – поддерживает кору в состоянии бодрствования. Тормозные влияния на СМ.

Мозолистое тело – плотный пучок нервных волокон, соединяет полушария, обеспечивает их совместную работу.

Гипоталамус – связан с гипофизом. Гипофиз – железа внутренней секреции, главная. В ней вырабатываются тропные гормоны, которые влияют на работу остальных эндокринных желез.

Нейросекреторные клетки гипоталамуса выделяют нейрогормоны:

Статины - тормозят выработку тропных гормонов гипофиза

Либерины – усиливают выработку тропных гормонов гипофиза

Функции - высший цент регуляции эндокринных желез

Нейросекреторные клетки, аксоны которых доходят до гипофиза и выделяют в гипофиз гормоны:

Окситоцин – обеспечивает сокращение матки при родах

Антидиуретический гормон – регулирует работу почек

Клетки гипоталамуса чувствительны к уровню половых гормонов (эстроген и андроген) и в зависимости от того, какие преобладают у человека, возникает та или иная половая мотивация. Клетки гипоталамуса чувствительны к температуре крови, регулирует теплоотдачу.

Главный сигнал голода – уровень глюкозы в крови. Только в гипоталамусе есть глюкорецептивные клетки, чувствительные к уровню глюкозы в крови. Собраны вместе и образуют центр голода.

Центр насыщения – возникновение чувства сытости.

Пример дисфункции: Булимия – заболевания центра сытости

Осморецептивные клетки – чувствительные к уровню солей в крови, возбуждаются – возникает чувство жажды.

На уровне гипоталамуса возникают только мотивации, а для их выполнения нужно включить кору.

Находится рядом с III желудочком мозга. Желудочки, в свою очередь, представляют собой полости, в которых происходит циркуляция спиномозговой жидкости (ликвора). Он входит в состав промежуточного мозга (диэнцефалона). У подавляющего большинства людей таламус разделен на две части, соединенные между собой серым веществом. Вокруг данное образование граничит с внутренней капсулой, которая отделяет его от Эта капсула состоит из нервных волокон, которые обеспечивают взаимодействие коры головного мозга с нижележащими структурами.

Основные ядра

Строение данного образования является довольно сложным, что объясняется широким спектром выполняемых таламусом функций. Основной составляющей таламуса является ядро, образованное из серого вещества мозга, то есть тел нервных клеток. Всего в таламусе насчитывается около 120 ядер. В зависимости от места размещения ядра классифицируются на следующие группы:

  • Передние.
  • Латеральные. Задняя часть этой группы, в свою очередь, подразделяется на подушку, медиальное и латеральное коленчатые тела.
  • Медиальные.

В зависимости от функций ядра классифицируются на такие группы:

  • специфические;
  • ассоциативные;
  • неспецифические.

Специфические ядра

Данная группа ядер зрительного бугра имеет ряд отличительных черт, объединяющих их. Во-первых, они получают импульсы от длинных нервных путей, которые обеспечивают передачу информации от соматосенсорных, зрительных и слуховых рецепторов к коре головного мозга. Через данные ядра импульс передается далее на соответствующие участки коры: соматосенсорную, слуховую и зрительную. Кроме того, информация от них поступает в премоторную и моторные участки коры.

Также специфические ядра получают обратную информацию от коры. В экспериментах доказано, что при удалении участка коры, соответствующего специфическому ядру, данное ядро также разрушается. А при стимуляции определенных ядер активизируются нервные клетки соответствующей им коры.

Данная группа получает информацию от коры, ретикулярной формации, ствола мозга. Именно из-за наличия этих связей у коры головного мозга есть возможность среди всей поступающей информации отбирать наиболее важную в данный момент.

Кроме того, в строение таламуса входят ядра, получающие информацию от красного и базальных ядер, лимбической системы, зубчатого ядра (расположено в мозжечке). Далее сигнал поступает к моторным зонам коры.

Ассоциативные ядра

Особенностью данной группы ядер является то, что они получают уже обработанные сигналы от других участков таламуса.

Благодаря их работе возможно осуществление интегративных процессов, при которых образуются обобщенные сигналы. Далее они передаются в ассоциативные участки коры головного мозга (лобную, теменную и височную доли). Именно благодаря наличию данного участка коры и ассоциативных ядер возможны такие процессы, как узнавание предметов, согласованность речи с моторной активностью, понимание трехмерности пространства и осознание себя в этом пространстве.

Неспецифические ядра

Эти ядра состоят из нервных клеток небольшого размера, принимающих информацию от нейронов других таламических ядер, лимбической системы, базальных ганглиев, гипоталамуса, ствола мозга. По восходящим путям ядра получают сигналы от болевых и температурных рецепторов, а через ретикулярную формацию - практически от всех остальных структур центральной нервной системы.

Основные функции

Таламус - ключевое образование при передаче нервных импульсов в кору головного мозга. При повреждении коры именно благодаря работе таламуса возможно частичное восстановление таких функций, как осязание, ощущение боли и температуры.

Еще одна важная функция таламуса - интеграция моторной и сенсорной деятельности. Это возможно благодаря поступлению в таламус информации как от моторных, так и от сенсорных центров нервной системы.

Кроме того, таламус необходим для обеспечения внимания и сознания. Также он принимает участие в формировании поведенческих реакций.

Благодаря связи с гипоталамусом, о котором речь пойдет далее в статье, функции таламуса также охватывают запоминание, эмоциональное поведение.

Гипоталамус

Эта структура является основным регулятором вегетативных и эндокринных функций организма. Он находится под зрительным бугром и III желудочком. Основной структурной частью гипоталамуса также являются ядра, однако их здесь гораздо меньшее количество.

В зависимости от локализации выделяют следующие группы ядер:

  • передняя - паравентрикулярное, супрахиазменное;
  • средняя - инфундибулярное ядро;
  • зад-няя - ядра мамиллярных тел.

Функции гипоталамуса

Ниже представлен перечень основных функций данной структуры:

  • управление активностью системы;
  • организация поведения (пищевое, половое, родительское, эмоциональное поведение и др.);
  • терморегуляция организма;
  • секреция гормонов: окситоцина, повышающего сократительную активность матки; вазопрессина, увеличивающего всасывание воды и натрия в почечных канальцах.

Перечисленные выше функции гипоталамуса обеспечиваются благодаря присутствию в нем разнообразных центров, а также специфических нервных клеток. Они способны реагировать на изменение состояния организма (температуру крови, водно-электролитный состав, количество в ней гормонов, концентрацию глюкозы и др.).

Таким образом, промежуточный мозг (таламус и гипоталамус в основном) имеет множество важнейших функций, благодаря которым возможна нормальная жизнедеятельность.



gastroguru © 2017