Политический процесс обществознание егэ. Проблемы политического процесса

Примеры решения задач. 1.3.1. Средняя квадратичная скорость молекул некоторого газа 450 м/с

1.3.1. Средняя квадратичная скорость молекул некоторого газа 450 м/с. Давление газа 50 кПа. Найти плотность газа при этих условиях.

Решение. Средняя квадратичная скорость молекул газа связана с его температурой соотношением

где R – универсальная газовая постоянная;

m – молекулярная масса газа;

T – абсолютная температура газа.

Для определения температуры газа воспользуемся уравнением Менделеева-Клапейрона

где r=m/V – плотность газа.

Следовательно

.

Подставляя численные значения имеем

1.3.2. Найти среднюю длину свободного пробега молекул воздуха при нормальных условиях. Эффективный диаметр молекул воздуха s=0,3 нм.

Решение. Средняя длина свободного пробега молекул газа

,

где – средняя арифметическая скорость молекул;

– среднее число столкновений каждой молекулы с остальными молекулами в единицу времени;

s – эффективный диаметр молекулы;

n – число молекул в единице объема (концентрация молекул). Для определения числа молекул в единице объема воспользуемся основным уравнением молекулярно-кинетической теории для давления

где k – постоянная Больцмана;

Т – температура газа.

Тогда для средней длины свободногопробегаимеем

.

Подставляячисленные значения, окончательно получаем:

м.

1.3.3. Найти среднее число столкновений в единицу времени молекул углекислого газа при температуре 100 o С, если средняя длина свободного пробега =870 мкм.

Решение. Число столкновений молекул газа в единицу времени связаносо средней длиной свободного пробега соотношением

,

где – средняя арифметическая скорость.

Следовательно,

Подставляячисленные значения имеем

1.3.4. При некотором давлении и температуре 0 o С средняя длина свободного пробега молекул кислорода 95 нм. Найти среднее число столкновений в единицу времени молекул кислорода, если давление кислорода уменьшить в 100 раз.

Решение. Среднее число столкновений в единицу времени

,

где =(8RT/pm) 1/2 – средняя арифметическая скорость молекул газа;

– средняя длина свободного пробега молекул.

При изменении давления газа длины свободного пробега обратно пропорциональныдавлению:

,

где l 1 , l 2 – длина свободного пробега молекул газа при соответствующих давлениях p 1 и p 2 .

В нашем случае:

Подставляя численные значения для , имеем

1.3.5. Какая часть молекул кислорода при t=0 o С обладает скоростями от 100 до 110 м/с?

Решение. Распределение молекул по скоростям можно определить из закона Максвелла

,

где u=v/v в – относительная скорость;

v – данная скорость;

v в =(2RT/m) 1/2 – наиболее вероятная скорость молекул;

Du – интервал относительных скоростей, малый по сравнению со скоростью u.

Тогда искомая часть молекул, которую необходимо определить (распределение молекул по скоростям)

В нашем случае v=100 м/с; v=10 м/с; Наиболее вероятная скорость v=(2RT/pm) 1/2 =376 м/с. Следовательно, u=v/v в =100/376, u 2 =0,071; Du=10/376; exp(-u 2)=0,93.

Таким образом, число молекул кислорода, скорости которых лежат в указанном интервале, равно 4%общего числа молекул.

1.3.6. Сосуд, содержащий газ, движется со скоростью v o , затем быстро останавливается. На сколько увеличится при этом средний квадрат скорости теплового движения молекул газа в случаях: одноатомного газа? Двухатомного газа? Газ считать идеальным.

Решение. Воспользуемся законом сохранения энергии. Пусть M-масса газа в сосуде. Двигаясь со скоростью v газ, как целое, обладает кинетической энергией

W к =Mv o 2 /2.

Эта формула определяет кинетическую энергию направленного движения молекул, в котором ониучаствуют вместе с сосудом. После остановки сосуда направленное движение молекул в результате их соударений со стенками сосуда очень скоропревратится в хаотическое.

Пренебрегая теплообменом между газом и стенкамисосуда за рассматриваемый промежуток времени, можно газ считать изолированной системой. Тогда из закона сохранения энергии следует, что "исчезнувшая" кинетическая энергия направленного движения молекул W должна быть равна приросту энергии хаотического движения молекул (приросту внутренней энергии DU:

Определим внутреннюю энергию газа. Для идеального одноатомного газа это есть энергия поступательного хаотического движения молекул:

где m – масса молекулы;

N – число молекул в сосуде.

Отсюда следует, что изменение внутренней энергии одноатомного газа при торможении

DU=U 2 –U 1 =M/2,

где v кв1 ,v кв2 – средние квадратичные скорости молекул газа соответственно в начале и конце торможения.

Подставив в уравнение W к =DU значения W к и DU, получим первый ответ

v 2 кв2 -v 2 кв1 =v 2 o .

Внутренняя энергия идеального двухатомного газа складывается из энергий поступательного и вращательного движения молекул. При этом три степени свободы приходятся на поступательное движение и две - на вращательное. В соответствии сзакономо равномерном распределении энергии по степенямсвободы, три пятых кинетической энергии W пойдет на увеличениеэнергии поступательного движения молекул и две пятых - на увеличение энергии их вращательного движения. Таким образом, теперь имеем

Откуда получим второй ответ:

1.3.7. Какая часть молекул водорода, находящегося при температуре T, обладает скоростями, отличающимися от наиболее вероятной скорости не свыше чем на 5,0 м/с? Задачу решить для двух значений T: 1) 400 К, 2) 900 К.

Решение. Распределение молекул по скоростям выражается законом Максвелла: число молекул DN, относительные скорости которых лежат в интервале от u до u+Du:

где N-полное число молекул газа;

– функция распределения Максвелла;

u=v/v в – относительная скорость;

v – данная скорость;

v в – наиболее вероятная скорость.

Закон распределения Максвелла оказывается справедливым при условии Du

.

Отсюда найдем ту часть молекул, относительные скорости которых лежат в интервале Du:

Прежде чем производить расчеты, необходимо убедиться в том, что выполняется условие Du

Чтобы вычислить Du, найдем сначала наиболее вероятную скорость при Т=400 К и Т=900 К по формуле:

v в1 =2×8,31×400/0,002=1,82×10 3 м/с,



v в2 =2×8,31×900/0,002=2,73×10 3 м/с.

Подставляя эти значения v в и имея в виду, что Dv=10 м/с, поскольку в задаче идетречь о скоростях, лежащих в интервале от v в =-5,0 м/с до v в =+5,0 м/с, получим:

Du 1 =1/182, Du 2 =1/273.

Так как u=1, видим, что условие Du

Теперь найдем

DN 1 /N=4/((3,14) 1/2 ×2,7×182)=0,0046,

DN 2 /N=4/((3,14) 1/2 ×2,7×273)=0,0030.

Таким образом, приувеличении температуры наиболее вероятная скорость молекул увеличивается,а числомолекул, скорости которых лежат в одном и том же интервале около наиболее вероятной, уменьшается.

Параметры, определяющие состояние вещества. Идеальный газ. Вывод основного уравнения кинетической теории газов. Вывод основных газовых законов. Уравнение состояния идеальных газов.

Идеальным газом называется газ, молекулы которого не взаимодействуют друг с другом на расстоянии и имеют исчезающе малые собственные размеры. Состояние заданной массы m идеального газа определяется значениями трёх параметров: давления P , объёма V , и температуры Т .

Уравнение состояния идеального газа или уравнение Менделеева - Клапейрона является обобщением законов идеального газа, открытых экспериментально до создания МКТ. Однако, из основного уравнения МКТ (2.3), можно получить уравнение состояния идеального газа. Для этого подставим вместо средней кинетической энергии поступательного движения молекулы в основное уравнение МКТ идеальных газов правую часть равенства (2.4), получим уравнение, в которое не входят микропараметры газа (2.5). Так как , следовательно, или . Учитывая, что , получим N=N A , а так как N A × k = R = 8,3 - молярная газовая постоянная или универсальная газовая постоянная , то получим уравнение Менделеева (2.6). Уравнение состояния газа часто удобно использовать в записи, предложенной Клапейроном , если количество вещества не изменяется или (2.7). Уравнение (2.7) часто называют обобщённым газовым законом . Тот факт, что из основного уравнения молекулярно-кинетической теории идеального газа можно вывести уравнение состояния идеального газа, подтверждает верность молекулярно-кинетической теории вещества.

Основное уравнение молекулярно – кинетической теории газов. Возьмем сосуд с газом и определим давление P газа на стенки сосуда. Для простоты рассмотрения выберем этот сосуд в форме куба с ребром l и расположим его в декартовой системе координат, как показано на рисунке. Пусть в сосуде имеется всего N молекул. Предположим, что:

1)Вдоль оси х движется одна треть всех молекул, т.е. ;

2)Удар молекул о стенку Q идеально упругий и молекулы проходят расстояние, равное размеру куба, не испытывая соударений.

Импульс силы, полученный стенкой при ударе молекулы, определим из второго закона Ньютона. . где - изменение импульса молекулы, m – масса молекулы. Поскольку масса стенки намного больше массы молекулы, то и или по модулю , где использовано обозначение . Таким образом, одна молекула одна молекула за время Dt передает стенке импульс силы , а за время сек передаёт стенке импульс силы равный , где k – число ударов молекул за 1 сек. Так как - промежуток времени между двумя последовательными ударами,. то , тогда . Теперь подсчитаем суммарный импульс силы, который передают стенке N 1 молекул, движущихся вдоль оси x , за 1 сек , где скобки < > обозначают среднее значение выражения, стоящего в скобках. Если извлечь корень квадратный из < V 2 >, получим среднюю квадратичную скорость молекул, которую будем обозначать <V кв > - средняя квадратичная скорость молекул газа. Давление, оказываемое газом на грань куба, равно: , где n – концентрация молекул. Запишем это выражение в виде , чтобы подчеркнуть, что в левую часть этого выражения входит средняя кинетическая энергия поступательного движения молекулы . Тогда - основное уравнение молекулярно-кинетической теории (уравнение Клаузиуса) С учетом уравнения состояния идеального газа: получаем выражение для средней кинетической энергии поступательного движения молекул: - средняя кинетическая энергия поступательного движения молекул. Мы видим, что величина kT есть мера энергии теплового движения молекул.



Газовые законы установлены в 17 веке экспериментально. Однако, их можно получить, используя уравнение Менделеева - Клапейрона.

Закон Бойля-Мариотта. Для данногоколичества вещества рассмотрим изотермический процесс , то есть процесс, протекающий без изменения температуры (Т= const). Используя уравнение (2.6) или (2.7), получим уравнение изотермы, выраженное через давление и объём газа: (2.7). или (2.7’). Для данного количества вещества при изотермическом процессе произведение давления на объём есть величина постоянная. Для построения диаграммы Р(V) выразим давление через объем . Зависимость между давлением и объёмом – обратно пропорциональная, графически представлена гиперболой на рис.2.3 а . Температурные зависимости давления и объёма представлены на рис.2.3 б и в , соответственно.

Закон Гей-Люссака. изобарический процесс , то есть процесс, протекающий без изменения давления

(Р = const). Используя уравнение (2.6) или (2.7), получим уравнениеизобары, выраженное через температуру и объём: ,(2.8). через параметры начального и конечного состояния или . Для данного количества вещества при изобарическом процессе отношение объёма к температуре (или наоборот) есть постоянная величина. Изобарический закон можно записать и в виде: . Здесь V 0 - объём газа при t=0 0 C, t- температура в 0 С, a - термический коэффициент объемного расширения; . Для идеального газа , , но , тогда - термический коэффициент объёмного расширения идеального газа равен величине, обратной температуры. Изображение этого процесса приведено на рис. 2.4. Закон Шарля. Для данного количества вещества рассмотрим изохорический процесс , то есть процесс, протекающий без изменения объёма (V = const). Используя уравнение (2.6) или (2.7), получим уравнениеизохоры, выраженное через температуру и давление газа: , (2.9) через параметры начального и конечного состояния или . Для данного количества вещества при изохорическом процессе отношение давления к температуре (или наоборот) есть величина постоянная.

Изображение этого процесса приведено на рис. 2.5.

Закон Авогадро При одинаковых давлениях (Р) и температурах (Т) в равных объемах (V) любого газа содержится одинаковое число молекул. , следовательно, N 1 = N 2

Закон Дальтона (для смеси газов) Давление смеси газов равно сумме парциальных давлений Р см =Р 1 +Р 2 +... +Р К (2.10). Этот закон можно также получить, используя уравнение состояния идеального газа. , - парциальное давление - давление, которое оказывал бы данный компонент газа, если бы он один занимал весь объем, предоставленный смеси.

R - Численно равна работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К.=8,31дж/(моль*К)

Сфера. , , число ударов о стенку за 1 с следовательно сумма всех импульсов сообщенных одной молекулой за 1 с равняется а у нас таких молекул т.е. сумма импульсов сообщенных стенке всеми молеклами за 1 с сила с которой все молекулы давят на стенку. , среднеквадратичная скорость одной молекул

, – средняя кинетическая энергия одной молекулы. : - постоянная Больцмана

28. Распределение скоростей молекул по Максвеллу. Наивероятнейшая скорость.Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движени При выводе основного уравнения молекулярно-кинетической теории молекулам за­давали различные скорости. В результате многократных соударений скорость каждой молекулы изменяется по модулю и на­правлению. Однако из-за хаотического движения молекул все направления дви­жения являются равновероятными, т. е. в любом направлении в среднем дви­жется одинаковое число молекул. По молекулярно-кинетической теории, как бы ни изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул массой m 0 в газе, на­ходящемся в состоянии равновесия при Т = const, остается постоянной и равной =Ö3kT/m 0 . Это объясняется тем, что в газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, ко­торое подчиняется вполне определенному статистическому закону. Этот закон теоре­тически выведен Дж. Максвеллом.При выводе закона распределения мо­лекул по скоростям Максвелл предпола­гал, что газ состоит из очень большого числа N тождественных молекул, находя­щихся в состоянии беспорядочного тепло­вого движения при одинаковой температу­ре. Предполагалось также, что силовые поля на газ не действуют.Закон Максвелла описывается некото­рой функцией f(v), называемой функцией распределения молекул по скоростям. Ес­ли разбить диапазон скоростей молекул намалые интервалы, равные dv, то на каж­дый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN (v)/N, v до v+dv, т. е.откуда f(v)=dN(v)/Ndv Применяя методы теории вероятно­стей, Максвелл нашел функцию f(v) - закон для распределения молекул идеаль­ного газа по скоростям: Из (44.1) видно, что конкретный вид фун­кции зависит от рода газа (от массы моле­кулы) и от параметра состояния (от тем­пературы Т). График функции (44.1) приведен на рис. 65. Так как при возрастании v множитель уменьшается быстрее, чем растет множитель v 2 , то функция f(v), начинаясь от нуля, достигает максимума при v в и затем асимптотически стремится к нулю. Кривая несимметрична относи­тельно v в. Относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, находится как площадь бо­лее светлой полоски на рис. 65. Площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Это озна­чает, что функция f(v) удовлетворяет усло­вию нормировки Скорость, при которой функция рас­пределения молекул идеального газа по скоростям максимальна, называется наи­более вероятной скоростью. Значение наи­более вероятной скорости ожно найти продифференцировав выражение (44.1) (постоянные множители опускаем) по ар­гументу v, приравняв результат нулю и ис­пользуя условие для максимума выраже­ния f(v): Значения v= v=¥ соответствуют минимумам выражения (44.1), а значе­ние v, при котором выражение в скобках становится равным нулю, и есть искомая наиболее вероятная скорость v в: Из формулы (44.2) следует, что при повышении температуры максимум функ­ции распределения молекул по скоростям (рис. 66) сместится вправо (значение наи­более вероятной скорости становится больше). Однако площадь, ограниченная кривой, остается неизменной, поэтому при повышении температуры кривая распреде­ления молекул по скоростям будет растя­гиваться и понижаться. Средняя скорость молекулы (средняя арифметическая скорость)

29. Число степеней свободы. Закон Больцмана. Внутренняя энергия газа. Важной характеристикой термодинамиче­ской системы является ее внутренняя энергия U - энергия хаотического (тепло­вого) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Из этого определения следует, что к внутрен­ней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях. Внутренняя энергия - однозначная функция термодинамического состояния системы, т. е. в каждом состоянии система обладает вполне определенной внутренней энергией (она не зависит от того, как система пришла в данное состояние). Это означает, что при переходе системы из одного состояния в другое изменение внут­ренней энергии определяется только раз­ностью значений внутренней энергии этих состояний и не зависит от пути перехода. В § 1 было введено понятие числа степеней свободы - числа независимых переменных (координат), полностью опре­деляющих положение системы в простран­стве. В ряде задач молекулу одноатомного газа (рис. 77, а) рассматривают как мате­риальную точку, которой приписывают три степени свободы поступательного движе­ния. При этом энергию вращательного движения можно не учитывать (r->0, J= mr 2 ®0, T вр =Jw 2 /2®0). В классической механике молекула двухатомного газа в первом приближении рассматривается как совокупность двух материальных точек, жестко связанных недеформируемой связью (рис. 77,б). Эта система кроме трех степеней свободы по­ступательного движения имеет еще две степени свободы вращательного движе­ния. Вращение вокруг третьей оси (оси, проходящей через оба атома) лишено смысла. Таким образом, двухатомный газ обладает пятью степенями свободы (i=5). Трехатомная (рис. 77,0) и многоатомная нелинейные молекулы имеют шесть степе­ней свободы: три поступательных и три вращательных. Естественно, что жесткой связи между атомами не существует. По­этому для реальных молекул необходимо учитывать также степени свободы колеба­тельного движения. Независимо от общего числа степеней свободы молекул три степени свободы всегда поступательные. Ни одна из по­ступательных степеней свободы не имеет преимущества перед другими, поэтому на каждую из них приходится в среднем оди­наковая энергия, равная 1 / 3 значения В классической статистической физике выводится закон Больцмана о равномер­ном распределении энергии по степеням свободы молекул : для статистической системы, находящейся в состоянии термо­динамического равновесия, на каждую по­ступательную и вращательную степени свободы приходится в среднем кинетиче­ская энергия, равная kT/2, а на каждую колебательную степень свободы - в сред­нем энергия, равная kT. Колебательная степень «обладает» вдвое большей энер­гией потому, что на нее приходится не только кинетическая энергия (как в слу­чае поступательного и вращательного дви­жений), но и потенциальная, причем сред­ние значения кинетической и потенциальной энергий одинаковы. Таким образом, средняя энергия молекулы где i - сумма числа поступатель­ных, числа вращательных и удвоенного числа колебательных степеней свободы молекулы: i =i пост +i вращ +2i колеб. В классической теории рассматривают молекулы с жесткой связью между атома­ми; для них i совпадает с числом степеней свободы молекулы. Так как в идеальном газе взаимная потенциальная энергия молекул равна ну­лю (молекулы между собой не взаимодей­ствуют), то внутренняя энергия, отнесен­ная к одному молю газа, будет равна сумме кинетических энергий N A молекул: Внутренняя энергия для произвольной массы т газа где М - молярная масса, v - количе­ство вещества.



gastroguru © 2017