Основные параметры и происхождение. Размеры и строение земли

Источник: apxiv

Меня периодически посещает ощущение что многие простые вещи специально излагаются так, чтобы читатель ничего не понимал и тупо заучивал, либо прочувствовал свою ничтожность перед изощренностью науки. Это всецело относится к известному по школьным учебникам феерическому способу Эратосфена измерения окружности земного шара. Может быть он на самом деле вычислял таким извращенским способом, но зачем этот бред тиражировать со школы?

О том, как можно запудрить мозги в простом вопросе, посмотрим на примере вычисления длины окружности Земли в морских милях, который является частным случаем измерения широты местности и длины пройденного пути по меридиану.



Если современному человеку дать задачу вычислить длину окружности Земли в морских милях, он в подавляющем большинстве случаев заглянет в интернет/справочники и решит примерно так: длину окружности Земли например по парижскому меридиану 40.000 км с помощью калькулятора разделит на современную морскую милю 1,852 км и получит 21.598,3 морских миль, что будет близко к действительности.

Теперь покажу как вычислить длину окружности Земли в уме и абсолютно точно. Для этого надо знать только одно: "Морская миля - единица измерения расстояния, применяемая в мореплавании и авиации. Первоначально морская миля определялась как длина дуги большого круга на поверхности земного шара размером в одну угловую минуту."

В одном угловом градусе 60 минут, в окружности - 360 градусов, то есть в окружности 360х60=21.600 угловых минут, что в данном случае соответствует длине окружности земного шара в 21.600 морских миль. И это - абсолютно точно, поскольку длина окружности земного шара по меридиану является эталоном, а угловая минута-миля - производная единица. Поскольку Земля - не идеальный сфероид, а слегка кривоватый, то мили на разных меридианах будут немного отличаться друг от друга, но это совершенно неважно для навигации, ибо угловая минута - она и в Африке угловая минута.

Широту местности с точностью до градусов вполне можно измерить даже примитивными приспособлениями вроде транспортира с отвесом, который не сильно отличается от реально применявшегося моряками квадранта и по существу то же самое что и астролябия:

Для более точных измерений углов впоследствии был изобретен секстант (мор. арго - секстан):

Современные люди слабо представляют себе что такое аналоговые вычислительные машины и как ими пользоваться. Для того, чтобы вычислить расстояние между двумя точками в меридиональном направлении, надо всего лишь измерить широты точек, а разность широт выраженная в угловых минутах и будет расстоянием между ними в морских милях. Все просто, удобно и практически применимо.

Если уж так сильно хочется выяснить сколько в морской миле стадий, саженей, аршинов или там египетских локтей, надо аккуратно на коленках промерить ими расстояние между точками с известным расстоянием в морских милях-угловых минутах. Но зачем? Как это практически применимо?

Эратосфен будто бы измерял углы с точностью до угловых секунд и разница широт Александрии составила у него 7° 6,7", то есть 7х60=420+6,7=426,7 морских миль (угловых минут). Кажется, что еще надо? Но ему почему-то требуются дни пути верблюдов и стадии. Возникает ощущение чего-то надуманного - фейка или розыгрыша.

Метод Эратосфена согласно В. А. Бронштейн, Клавдий Птолемей, Гл.12. Работы Птолемея в области географии:

"Как известно, метод Эратосфена заключался в определении дуги меридиана между Александрией и Сиеной в день летнего солнцестояния. В этот день, по рассказам лиц, посещавших Сиену, Солнце в полдень освещало дно самых глубоких колодцев и, значит, проходило через зенит. Следовательно, широта Сиены равнялась углу наклона эклиптики к экватору, который Эратосфен определил в 23°51"20". В тот же день и час в Александрии тень от вертикального столбика гномона закрывала 1/50 часть окружности, центром которой служил кончик гномона. Это значит, что Солнце отстояло в полдень от зенита на 1/50 часть окружности, или на 7° 12". Приняв расстояние между Александрией и Сиеной равным 5000 стадиев, Эратосфен нашел, что окружность земного шара равна 250 000 стадиев. Вопрос о точной длине стадия, принятого Эратосфеном, долгое время служил предметом дискуссий, поскольку существовали стадии длиной от 148 до 210 м <60>. Большинство исследователей принимали длину стадия 157,5 м («египетский» стадий). Тогда окружность Земли равна, по Эратосфену, 250 000-0,1575 = 39 375 км, что очень близко к действительному значению 40 008 км. Если же Эратосфен пользовался греческим («олимпийским») стадием длиной 185,2 м, то получалась окружность Земли уже 46 300 км.

По современным измерениям <97> широта Музея в Александрии 31°11,7" широта Асуана (Сиены) 24° 5,0", разница широт 7° 6,7", чему соответствует расстояние между этими городами 788 км. Деля это расстояние на 5000, получим длину стадия, использованного Эратосфеном, 157,6 м. Значит ли это, что он использовал египетский стадий?

Этот вопрос сложнее, чем может показаться. Уже одно то, что Эратосфен привел явно округленное число - 5000 стадиев (а, скажем, не 5150 или 4890) не внушает к нему доверия. А если оценка Эратосфена была завышена хотя бы на 15%, получим, что он использовал египетский стадий в 185 м. Решить этот вопрос пока нельзя."

Теперь обратим внимание на следующие обстоятельства:

Асуан (Сиена) и Александрия не находятся на одном меридиане, разница по долготе составляет 3°, то есть около 300 километров.

Эратосфен не измерил расстояние, а принял исходя из дней пути верблюдов, которые ходили явно не по прямой линии.

Совершенно неясно каким прибором Эратосфен измерял углы с точностью до секунд

Непонятно какой стадий использован Эратосфеном для измерения расстояний и т.п.

Но при этом он будто бы получил достаточно точный результат! Или историками сделана подгонка под результат?

Из Википедии: «Эратосфен говорит, что Сиена и Александрия лежат на одном меридиане. И поскольку меридианы в космосе являются большими кругами, такими же большими кругами обязательно будут и меридианы на Земле. И поскольку таков солнечный круг между Сиеной и Александрией, то и путь между ними на Земле с необходимостью идёт по большому кругу. Теперь он говорит, что Сиена лежит на круге летнего тропика. И если бы летнее солнцестояние в созвездии Рака происходило ровно в полдень, то солнечные часы в этот момент времени с необходимостью не отбрасывали бы тени, поскольку Солнце находилось бы точно в зените; дела и в самом деле обстоят таким образом в [полосе шириной] в 300 стадиев. А в Александрии в этот же час солнечные часы отбрасывают тень, поскольку этот город лежит к югу от Сиены. Эти города лежат на одном меридиане и на большом круге. На солнечных часах в Александрии проведём дугу, проходящую через конец тени гномона и основание гномона, и этот отрезок дуги произведёт большой круг на чаше, поскольку чаша солнечных часов расположена на большом круге. Далее, вообразим две прямые, опускающиеся под Землю от каждого гномона и встречающиеся в центре Земли. Солнечные часы в Сиене находятся отвесно под Солнцем, и воображаемая прямая проходит от Солнца через вершину гномона солнечных часов, производя одну прямую от Солнца до центра Земли. Вообразим ещё одну прямую, проведённую от конца тени гномона через вершину гномона к Солнцу на чаше в Александрии; и она будет параллельна уже названной прямой, поскольку уже сказано, что прямые от разных частей Солнца к разным частям Земли параллельны (а это он откуда знает?). Прямая, проведённая от центра Земли к гномону в Александрии, образует с этими параллельными равные накрестлежащие углы. Один из них - с вершиной в центре Земли, при встрече прямых, проведённых от солнечных часов к центру Земли, а другой - с вершиной на конце гномона в Александрии, при встрече с прямой, идущей от этого конца к концу его же тени от Солнца, там где эти прямые встречаются наверху. Первый угол опирается на дугу от конца тени гномона до его основания, а второй - на дугу с центром в центре Земли, проведённую от Сиены до Александрии. Эти дуги подобны между собой, поскольку на них опираются равные углы. И какое отношение имеет дуга на чаше к своему кругу, такое же отношение имеет и дуга от Сиены до Александрии [к своему кругу]. Но найдено, что на чаше она составляет пятидесятую часть своего круга. Поэтому и расстояние от Сиены до Александрии с необходимостью будет составлять пятидесятую часть большого круга Земли. Но оно равно 5 000 стадиев. Поэтому весь круг будет равен 250 000 стадиям. Таков метод Эратосфена».

Позднее полученное Эратосфеном число было увеличено до 252 000 стадиев. Определить, насколько эти оценки близки к реальности, трудно, поскольку неизвестно, каким именно стадием пользовался Эратосфен. Но если предположить что речь идёт о греческом (178 метров), то его радиус земли равнялся 7 082 км, если египетским (157,5), то 6 287 км. Современные измерения дают для усреднённого радиуса Земли величину 6 371 км, что делает вышеописанный расчёт выдающимся достижением и первым достаточно точным расчётом размеров нашей планеты." via

Обращаю внимание на то, что в Википедии кроме подгонки результатов также сначала говорится об измерении Эратосфеном длины окружности Земли, а в итоге делается вывод о точности вычисления радиуса Земли. В общем, в огороде бузина, а в Киеве - дядька, хоть они и взаимосвязаны.

Диагноз очень простой: в учебниках по-прежнему будут тиражировать не дающий ничего для понимания сущности и практической применимости метод Эратосфена, но ни словом не будут упоминать связку "морская миля - угловая минута" как пример пропорционального мышления древних, потому что современный тренд заточен под дискретные вычислительные машины, а об аналоговых вычислительных машинах древности приходится рассказывать заново.

Тур Хейердал не просто выдвинул какие-то теории, он самолично провел множество следственных экспериментов по проверке своих утверждений в отличие от клавиатурных бойцов и многих кабинетных ученых. Так что его труды ИМХО должны быть в режиме "обязательны к прочтению".

Глава "Возможные океанские пути в Америку и из Америки до Колумба" :

"При знакомстве с теорией Хейердала, в том виде, какой она имела в 1961 году, становится ясно, что он подходит к вопросу о миграциях с известными оговорками. Хейердал учитывает огромные трудности, с которыми приходилось сталкиваться человеку прошлого.

Такая сдержанность необходима, потому что теперь повсеместно изменился взгляд на миграции через необозримые просторы океанов. Очень долго считалось (особенно в США), что заселение Нового Света происходило только через Берингов пролив и в определенный отрезок времени в далеком прошлом. И совпадения с теми или иными чертами высокоразвитых культур Старого Света всецело объясняли параллельным развитием.

Ныне эта культурно-историческая доктрина Мунро пересмотрена. Все больше склоняются к тому, чтобы признать, что азиатские народы совершили целый ряд далеких плаваний и открытий. Если говорить об Атлантическом океане, то полагают, что его первыми пересекли не норманны. В пору бурного расцвета миграционных теорий очень полезно прочесть анализ Хейердала, в котором кроме дезориентирующей подчас географической карты, учитываются также ветры и течения.

Настоящий доклад представляет собой краткий обзор возможных океанских путей, практически доступных человеку в далекие времена при плаваниях в Америку и из Америки. Я отнюдь не утверждаю, что по всем рассматриваемым ниже маршрутам в самом деле плавали предшественники Колумба, хотя очевидно, что на этих путях древнего человека не подстерегали неодолимые препятствия. И цель обзора не в том, чтобы углубиться в проблемы древнего взаимопроникновения культур, – я анализирую лишь чисто практические вопросы, возникающие у тех, кто допускает возможность трансокеанских сообщений между отдельными областями Старого и Нового Света.

Спору нет, океан куда более серьезно препятствовал географическому распространению первобытного человека, чем пустыня, болото, джунгли или тундра. Но в океане, в отличие от других географических препятствий, есть «тропы», которые вполне можно сравнить с реками. Вот почему утверждение, будто у человека было очень мало надежд перенести долгое трансокеанское плавание, выглядит скороспелым. Для определенных областей необходимы существенные поправки.

Современные этнологи, как правило, проходят мимо двух важных обстоятельств. Они не учитывают, во-первых, что расстояние между двумя полярными точками, лежащими в противоположных концах земного шара (наподобие Северного и Южного полюсов), по экватору ничуть не короче расстояния между ними по дуге большой окружности в любом полушарии и, во-вторых, что путевое расстояние, проходимое судном из одной географической точки в другую, практически не равно расстоянию, измеренному по карте, больше того – путь в одну сторону не равен пути в обратную сторону.

Первое обстоятельство можно проиллюстрировать следующим характерным примером. Разбирая интересное открытие (некоторые общие черты в керамике Японии и Эквадора), (II) редакция журнала «Ньюсуик» (19 февраля 1962 года, стр. 49) заявляет, что Экваториальное противотечение «идет прямо к Эквадору», тогда как «Японское течение делает крюк через северную часть Тихого океана». Обычный, широкоупотребительный оборот речи только вводит в заблуждение. Ведь на самом деле Куросио (Японское течение), якобы делающее крюк, – наиболее короткий и прямой из двух названных путей. В этом можно убедиться, если вместо обманчивой меркаторской проекции (она часто применяется для карт мира; в этой проекции поверхность земного шара приводится к поверхности цилиндра, поэтому приполярные области сильно искажены) обратиться к глобусу, который несравненно вернее передает реальную картину.

Похоже, мало кто из этнологов отдает себе отчет в том, что, если плыть от полуострова Малакка до Эквадора через Алеутские острова, получится прямая линия между этими двумя точками (прямее пути не придумаешь). Бессмысленно искать кратчайший путь по линии экватора: ведь он повторяет кривизну земного шара точно так же, как любая другая дуга большой окружности, только этого не видно на плоской карте Тихого океана.

Китай и Перу – тоже полярные. Расстояние по прямой между тихоокеанским побережьем Южного Китая и Перу через экватор ничуть не короче, чем через Северный или Южный полюс. Между этими двумя противолежащими берегами Тихого океана нельзя провести линию прямее или короче той, которая на меркаторской проекции описывает мнимую дугу через крайний север Тихого океана. Соедините на глобусе проволокой побережье Южного Китая с Перу вдоль экватора и смещайте проволоку вверх, закрепив оба конца, она уляжется даже на маршруте, проходящем через Берингово море.

Называть экватор кратчайшим путем между Юго-Восточной Азией и Южной Америкой так же неверно, как утверждать, что кратчайший путь от Северною до Южного полюса проходит по Гринвичскому меридиану.

Следует помнить, что громадный Тихий океан – не гладкая равнина, а правильное полушарие, одинаково покатое во все стороны. Тогда совсем в другом свете выглядят предпосылки для путешествий аборигенных судов в неизведанном океане. Первобытный мореплаватель в какую бы сторону ни шел, видел себя в центре плоского круга, у него не было карты, которая могла бы сбить его с толку.

Второе обстоятельство, решительно требующее большой осторожности при изучении древних океанских плаваний, связано с неверным определением путевого расстояния между фиксированными точками в море. Абсолютное расстояние между двумя точками можно выразить в милях, обычно оно расходится с действительным, которое нужно проплыть. Просто мы ничего не знаем о путевом расстоянии, пройденном древним мореходом, так как нам неизвестно соотношение между скоростью течения в этой области и технически возможной собственной скоростью судна. Чем меньше собственная скорость судна, тем больше несоответствие между измеренным и действительно пройденным путем.

Вот почему путевое расстояние для современного океанского лайнера может быть совсем иным, чем для примитивного судна, хотя бы они шли по одной и той же прямой, над одним и тем же участком неподвижного океанского дна. Насколько велика эта разница, можно показать на примере трансокеанского плавания на аборигенном судне, в котором участвовал автор.

Абсолютное расстояние от Перу до островов Туамоту приблизительно 4000 миль. А на самом деле плот «Кон-Тики», пройдя от Перу до Туамоту, пересек всего около 1000 миль океанской поверхности. Если представить себе первобытное судно, способное идти с той же собственной скоростью и тоже по прямой, но в противоположном направлении, ему, чтобы попасть с Туамоту в Перу, пришлось бы пройти 7000 миль по океанской поверхности. Дело в том, что за время плавания сама поверхность океана сместилась примерно на 3000 миль (около 50 градусов окружности земного шара). Итак, если говорить о путевом расстоянии, острова Туамоту находятся всего лишь в 1000 миль от Перу, тогда как от Туамоту до Перу для того, кто идет через океан со скоростью плота «Кон-Тики», 7000 миль.

Точно так же абсолютное расстояние между Перу и Маркизскими островами составляет примерно 4000 миль. Но средняя скорость течения в этой области приблизительно 40 миль в день, а это означает, что если аборигенное судно идет на запад с собственной скоростью 60 миль в день, оно на самом деле проходит в день 60 плюс 40, то есть 100 миль, и одолевает весь путь за 40 дней. В обратном направлении при той же собственной скорости оно будет делать 60 минус 40 миль, то есть 20 миль в день, и на путь от Маркизских островов до Перу уйдет 200 дней.


К – маршрут Колумба от Африки до Мексиканского залива; Э – маршрут Лейва Эйрикссона из Северо-Западной Европы до северо-восточной части Северной Америки; У – маршрут Урданеты из Индонезии в Северо-Западную Америку и Мексику; С – маршрут Сааведры из Мексики в Микронезию и Индонезию; М – маршрут Менданьц от Андского побережья в Полинезию и Папуа-Меланезию.

Пусть собственная скорость судна только 40 миль в день, оно все равно будет идти на запад со скоростью 40 плюс 40, или 80 миль, и уже через 50 дней достигнет Маркизских островов. А в обратную сторону при скорости 40 минус 40, то есть ноль миль в день, оно вообще не оторвется от архипелага.

Эти примеры приложимы не только к району, о котором мы говорили, они в той или иной мере распространяются на любые трансокеанские плавания первобытных судов. Наряду с кривизной поверхности великих океанов такой расчет путевого расстояния играет решающую роль, в последующих рассуждениях автора. Расчеты и кривизны, и путевого расстояния составляют ныне основу современной морской навигации, да и прежде, когда еще не было карт, с этими факторами считались все, кто прокладывал путь в Америку и из Америки. И наверно, они были не менее важны для тех, кто выходил в неизведанный океан, когда еще не было никаких описаний, если мы, конечно, допустим мысль, что доисторический человек отваживался пересекать огромную водную пустыню, это вечно движущееся полушарие.

Существует три основных океанских маршрута в Новый Свет (два через Атлантический океан и один через Тихий) и два основных маршрута из Нового Света (оба через Тихий океан). Эти маршруты настолько четко определены, что им можно присвоить названия в честь их исторически известных открывателей."

В главе "Культурные растения - доказательство доколумбовых контактов с Америкой" рассматриваются: кокосовый орех, бутылочная тыква, банан, хлопчатник (в том числе тетраплоидный 26-хромосомный), ананас, перувианская вишня (Physalis peruviana) и Argemone, ямсовые бобы, собственно ямс (Dioscorea sp.), гибискус (Hibiscus tiliaceus), фасоль обыкновенная(Phaseolus vulgaris), фасоль лимская (Phaseolus lunatus), родственное фасоли растение Canavalia sp.

Некоторые цитаты из главы "Бальсовый плот и роль гуар в аборигенном мореходстве Южной Америки":

"Грубая зарисовка бальсового плота под парусами была сделана голландским адмиралом Шпильбергеном(16) во время его кругосветного плавания в 1614-1617 годах. Шпильберген сообщает, что на этом плоту команда из пяти аборигенов выходила на два месяца ловить рыбу. Улова, доставленного в Паиту, что лежит в 120 милях южнее перуанского порта Тумбеса, хватило, чтобы снабдить провиантом все голландские корабли, стоявшие в бухте. Рисунок Шпильбергена интересен тем, что команда показана в работе. Два индейца заняты парусом, остальные трое маневрируют гуарами – широкими досками, просунутыми в щели между бревнами; не видно ни весел, ни какого-либо руля. Такие выдвижные шверты были освоены европейскими судостроителями только в 1870 году, то есть через двести пятьдесят лет.

В тексте Шпильберген ничего не говорит о гуарах, он лишь заключает, что плот оказался превосходным судном.

Прошло сто тридцать лет, прежде чем навигационные приемы индейцев настолько заинтересовали двух испанских морских офицеров, Хуана и Ульоа, что они решили проникнуть в тайну аборигенных гуар. Они опубликовали превосходный рисунок бальсового плота в море, передав такие детали, как устройство двуногой мачты с парусами и такелажем, расположение рубки в средней части судна, «камбуза» с открытым очагом и запасом воды в кувшинах на корме, размещение выдвижных швертов в носовой и кормовой частях. Хуан и Ульоа решительно утверждали, что индейская команда, хорошо усвоившая искусство маневрирования выдвижными швертами, при любом ветре могла вести бальсовый плот, как обычный корабль.

Они писали: «До сих пор мы говорили только о конструкции и применении плотов, но главная особенность этих судов заключается в том, что они ходят, лавируют и приводятся к ветру ничуть не хуже килевых судов и почти не подвержены сносу. Достигается это с помощью не руля, а другого приспособления, а именно досок длиной три-четыре метра и шириной около полуметра, которые устанавливают вертикально между бревнами основания как на носу, так и на корме.

Погружая глубоко в воду одни доски и поднимая другие, они ходят в бакштаг, приводятся к ветру, меняют галс, ложатся в дрейф – короче, выполняют все маневры, доступные обычным судам.Изобретение, до сих пор неизвестное самым просвещенным нациям Европы… Если погрузить в воду гуару на носу, судно приводится к ветру, если ее поднять, оно пойдет в бакштаг или спустится под ветер. И если погрузить в воду гуару на корме, плот пойдет в бакштаг, а если поднять, он приводится и идет круче к ветру.

Таков способ, с помощью которого индейцы управляют бальсовыми плотами; порой они ставят пять или шесть гуар, чтобы воспрепятствовать сносу, и ясно, что чем глубже в воду погружены гуары, тем больше сопротивление судна с этой стороны, так как гуары выполняют функцию выдвижных килей (подобно позднейшим швертам), применяемых на небольших парусных судах. Способ управления гуарами настолько легок и прост, что, когда плот ложится на нужный курс, дальше пользуются лишь одной из них, погружая или поднимая ее по мере надобности"(17).

Эти древнеперуанские приемы управления судном произвели такое сильное впечатление на обоих авторов, что они настоятельно предлагали перенять их в Европе."

... "Затем рассказы о перуанской технике мореходства опубликовали знаменитый ученый и путешественник Александр фон Гумбольдт (1810 год) и его английский коллега Стивенсон (1825 год).(20) Стивенсон оставил превосходное описание бальсовых плотов, которые все еще использовали вдоль побережья бывшего государства Чиму вплоть до Хуанчако, южнее Чикамы. На самых больших плотах стояли бамбуковые хижины с четырьмя-пятью помещениями; такие плоты ходили против ветра и течения на сотни миль с грузом 25-30 тонн, не считая команду и ее провиант."

... "Французский исследователь мореходства Пари отправился в северо-западную часть Южной Америки, чтобы изучить там бальсовый плот. Он описал этот плот в своем капитальном труде о неевропейских судах, вышедшем в 1841-1843 годах. Сто с небольшим лет назад Пари писал: «В Перу по-прежнему применяют такие же плоты, какие в древности строили аборигены; они настолько приспособлены к местным условиям, что их предпочитают всем другим судам…».

Как и все планеты Солнечной системы, Земля имеет шарообразную форму. Прежде чем говорить о ее точных размерах, введем несколько важных географических понятий.

Земля вращается вокруг воображаемой прямой - так называемой земной оси . Точки пересечения земной оси с земной поверхностью называются полюсами . Их два: Северный и Южный. Линия пересечения поверхности земного шара плоскостью, проходящей через центр Земли перпендикулярно земной оси, называется экватором . Плоскости, пересекающие земную поверхность параллельно плоскости экватора, образуют параллели , а плоскости, проходящие через два полюса, - меридианы .

Из-за вращения вокруг своей оси и возникающей при этом центробежной силы, Земля немного сплюснута у полюсов и ее большая полуось (экваториальный радиус, r c) почти на 21,4 км больше, чем расстояние от центра Земли до полюсов. Такой сплюснутый у полюсов шар называется сфероидом или эллипсоидом вращения .

В России для геодезических и картографических работ используют эллипсоид Ф. Н. Красовского (назван в честь ученого, под руководством которого велись расчеты). Его размеры таковы:

  • экваториальный радиус - 6378,2 км,
  • полярный радиус - 6356,8,
  • длина меридиана - 40008,5 км,
  • длина экватора - 40075,7 км,
  • площадь поверхности Земли - 510 млн. км 2 .

В действительности фигура Земли еще сложнее. Она отклоняется от правильной формы сфероида из-за неоднородного строения недр и неравномерного распределения массы. Истинная геометрическая фигура Земли называется геоидом ("землеподобным"). Геоид - это фигура, поверхность которой всюду перпендикулярна направлению силы тяжести, т.е. отвесу.

Поверхность геоида совпадает с уровенной поверхностью Мирового океана (мысленно продолженной под материками и островами). Поднятия и опускания геоида над сфероидом составляют 500-100 м.

Физическая же поверхность Земли, осложненная горами и впадинами не совпадает и с поверхностью геоида, отступая от него на несколько километров. Сила тяжести постоянно стремится выровнять поверхность Земли, привести ее в соответствие с поверхностью геоида.

Земля является объектом исследования значительного количества наук о Земле. Изучение Земли как небесного тела принадлежит к области , строение и состав Земли изучает геология, состояние атмосферы - метеорология, совокупность проявлений жизни на планете - биология. География дает описание особенностей рельефа поверхности планеты - океанов, морей, озер и год, материков и островов, гор и долин, а также поселения и обществ. образования: города и села, государства, экономические районы и т.д.

Планетарные характеристики

Земля вращается вокруг звезды Солнце по эллиптической орбите (очень близкой к круговой) со средней скоростью 29765 м / с на среднем расстоянии 149 600 000 км за период, что примерно равно 365,24 суток. Земля имеет спутник - , которая вращается вокруг Солнца на среднем расстоянии 384400 км. Наклон земной оси к плоскости эклиптики составляет 66 0 33"22"". Период обращения планеты вокруг своей оси 23 ч 56 мин 4,1 с. Вращение вокруг своей оси вызывает смену дня и ночи, а наклон оси и обращение вокруг Солнца - смену времен года.

Форма Земли - геоид. Средний радиус Земли составляет 6371,032 км, экваториальный - 6378,16 км, полярный - 6356,777 км. Площадь поверхности земного шара 510 млн км ², объем - 1,083 · 10 12 км ², средняя плотность - 5518 кг / м ³. Масса Земли составляет 5976.10 21 кг. Земля имеет магнитное и тесно связанное с ним электрическое поля. Гравитационное поле Земли обуславливает ее близкую к сферической форму и существование атмосферы.

По современным космогоническим представлениям Земля образовалась примерно 4,7 млрд лет назад из рассеянного в протосолнечной системе газового вещества. В результате дифференциации вещества Земли, под действием своего гравитационного поля, в условиях разогрева земных недр возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки - геосферы: ядро (в центре), мантия, земная кора, гидросфера, атмосфера, магнитосфера. В составе Земли преобладает железо (34,6%), кислород (29,5%), кремний (15,2%), магний (12,7%). Земная кора, мантия и внутренняя часть ядра твердые (внешняя часть ядра считается жидкой). От поверхности Земли к центру возрастают давление, плотность и температура. Давление в центре планеты 3.6 · 10 11 Па, плотность примерно 12,5 · 10 ³ кг / м ³, температура в диапазоне от 5000 до 6000 ° C . Основные типы земной коры - материковый и океанический, в переходной зоне от материка к океану развита кора промежуточного строения.

Форма Земли

Фигура Земли - это идеализация, с помощью которой пытаются описать форму планеты. В зависимости от цели описания используют различные модели формы Земли.

Первое приближение

Наиболее грубой форме описания фигуры Земли при первом приближении - есть сфера. Для большинства проблем общего землеведения этого приближения представляется достаточным, чтобы использовать в описании или исследовании некоторых географических процессов. В таком случае отвергают Сплющенность планеты при полюсах как несущественное замечание. Земля имеет одну ось вращения и экваториальную плоскость - плоскость симметрии и плоскости симметрии меридианов, что характерно отличает ее от бесконечности множеств симметрии идеальной сферы. Горизонтальная структура географической оболочки характеризуется определенной поясностью и определенной симметрией относительно экватора.

Второе приближение

При большем приближении фигуру Земли приравнивают к эллипсоида вращения. Эта модель, характеризующаяся выраженной осью, экваториальной плоскостью симметрии и меридиональными плоскостями, используется в геодезии для вычисления координат, построение картографических сетей, расчетов и т.д. Разница полуосей такого эллипсоида составляет 21 км, большая ось - 6378,160 км, малая - 6356,777 км, эксцентриситет - 1 / 298, 25. Положение поверхности легко может быть теоретически рассчитано, но его невозможно определить экспериментально в натуре.

Третье приближение

Так как экваториальный сечение Земли также эллипс с разностью длин полуосей в 200 м и эксцентриситетом 1 / 30000, третьей моделью выступает трехосный эллипсоид. В географических исследованиях эта модель почти не используется, она лишь свидетельствует о сложной внутреннее строение планеты.

Четвертое приближение

Геоид - это эквипотенциальные поверхность, совпадающая со средним уровнем Мирового океана, является геометрическим местом точек пространства, имеющих одинаковый потенциал силы тяжести. Такая поверхность имеет неправильную сложную форму, т.е. не является плоскостью. Уровневая поверхность в каждой точке перпендикулярна к отвеса. Практическое значение и важность этой модели состоит в том, что только с помощью отвеса, уровня, нивелира и других геодезических приборов можно проследить положение уровневых поверхностей, т.е. в нашем случае, геоида.

Океан и суша

Генеральная особенность строения земной поверхности заключается в распределении на материки и океаны. Большая часть Земли занята Мировым океаном (361,1 млн. км ² 70,8%), суша составляет 149,1 млн. км ² (29,2%), и образует шесть материков (Евразию, Африку, Северную Америку, Южную Америку, и Австралию) и острова. Она поднимается над уровнем мирового океана в среднем на 875 м (наибольшая высота 8848 м - гора Джомолунгма), горы занимают свыше 1 / 3 поверхности суши. Пустыни покрывают примерно 20% поверхности суши, леса - около 30%, ледники - свыше 10%. Амплитуда высот на планете достигает 20 км. Средняя глубина мирового океана примерно равна 3800 м (наибольшая глубина 11020 м - Марианский желоб (впадина) в Тихом океане). Объем воды на планете составляет 1370 млн км ³, средняя соленость 35 ‰ (г / л).

Геологическое строение

Геологическое строение Земли

Внутреннее ядро, предположительно, имеет диаметр 2600 км и состоит из чистого железа или никеля, внешнее ядро толщиной 2250 км из расплавленного железа или никеля, мантия около 2900 км толщиной состоит преимущественно из твердых горных пород, отделенная от земной коры поверхностью Мохоровича. Кора и верхний слой мантии образуют 12 основных подвижных блоки, некоторые из них несут континенты. Плато постоянно медленно движутся, это движение называется тектоническим дрейфом.

Внутреннее строение и состав «твердой» Земли. 3. состоит из трех основных геосфер: земной коры, мантии и ядра, которое, в свою очередь, делится на ряд слоев. Вещество этих геосфер разная по физическим свойствам, состоянием и минералогическим составом. В зависимости от величины скоростей сейсмических волн и характера их изменения с глубиной «твердую» Землю делят на восемь сейсмических слоев: А, В, С, D ", D ", Е, F и G. Кроме того, в Земле выделяют особо прочный слой литосферу и следующий, размягченный слой - астеносферу Шар А, или земная кора, имеет переменную толщину (в континентальной области - 33 км, в океанической - 6 км, в среднем - 18 км).

Под горами кора утолщается, в рифтовых долинах срединно-океанических хребтов почти исчезает. На нижней границе земной коры, - поверхности Мохоровичича, - скорости сейсмических волн возрастают скачкообразно, что связано преимущественно с изменением вещественного состава с глубиной, переходом от гранитов и базальтов в ультраосновных горных пород верхней мантии. Слои В, С, D ", D "входят в мантию. Слои Е, F и G образуют ядро Земли радиусом 3486 км На границе с ядром (поверхности Гутенберга) скорость продольных волн резко уменьшается на 30%, а поперечные волны исчезают, что означает, что внешнее ядро (слой Е, тянется до глубины 4980 км) жидкое Ниже переходного слоя F (4980-5120 км) находится твердое внутреннее ядро (слой G), в котором вновь распространяются поперечные волны.

В твердой земной коре преобладают такие химические элементы: кислород (47,0%), кремний (29,0%), алюминий (8,05%), железо (4,65%), кальций (2,96%), натрий (2,5%), магний (1,87%), калий (2,5%), титан (0,45%), которые в сумме составляют 98,98%. Наиболее редкие элементы: Ро (примерно 2.10 -14 %), Ra (2.10 -10 %), Re (7.10 -8 %), Au (4,3 · 10 -7 %), Bi (9 · 10 -7 %) и т.д.

В результате магматических, метаморфических, тектонических процессов и процессов осадкообразования земная кора резко дифференцирована, в ней протекают сложные процессы концентрации и рассеяния химических элементов, приводящих к образованию различных типов пород.

Считают, что верхняя мантия по составу близка к ультраосновных пород, в которых преобладает О (42,5%), Mg (25,9%), Si (19,0%) и Fe (9,85%). В минеральном отношении здесь царит оливин, меньше пироксенов. Нижнюю мантию считают аналогом каменных метеоритов (хондритов). Ядро 3емли по составу аналогичное железным метеоритам и содержит примерно 80% Fe , 9% Ni , 0,6% Co . На основе метеоритной модели рассчитан средний состав Земли, в котором преобладает Fe (35%), А (30%), Si (15%) и Mg (13%).

Температура является одной из важнейших характеристик земных недр, позволяющих объяснить состояние вещества в различных слоях и построить общую картину глобальных процессов. По измерениям в скважинах температура на первых километрах нарастает с глубиной с градиентом 20 ° C / км. На глубине 100 км, где находятся первичные очаги вулканов, средняя температура чуть ниже температуры плавления горных пород и равна 1100 ° C. При этом под океанами на глубине 100-200 км температура выше, чем во континентами, на 100-200 ° C. Скачок плотности вещества в слое С на глибинв 420 км соответствует давления 1,4 · 10 10 Па и отождествляется с фазовым переходом в оливин, который происходит при температуре примерно 1600 ° C. На границе с ядром при давления 1,4 · 10 11 Па и температуре порядка 4000 ° C силикаты находятся в твердом состоянии, а железо в жидком. В переходном слое F, где железо затвердевает, температура может быть 5000 ° C, в центре 3емли - 5000-6000 ° C, т.е., адекватная темпператури Солнца.

Атмосфера Земли

Атмосфера Земли, общая масса которой 5,15 · 10 15 т, состоит из воздуха - смеси в основном азота (78,08%) и кислорода (20,95%), 0,93% аргона, 0,03% углекислого газа, остальное - это водяной пар, а также инертные и другие газы. Максимальная температура поверхности суши 57-58 ° C (в тропических пустынях Африки и Северной Америки), минимальная - около -90 ° C (в центральных районах Антарктиды).

Атмосфера Земли защищает все живое от губительного воздействия космического излучения.

Химический состав атмосферы Земли : 78,1% - азот, 20 - кислород, 0,9 - аргон, остальные - углекислый газ, водяной пар, водород, гелий, неон.

Атмосфера Земли включает :

  • тропосферу (до 15 км)
  • стратосферу (15-100 км)
  • ионосферу (100 - 500 км).
Между тропосферой и стратосферой размещается переходный слой - тропопауза. В глубинах стратосферы под воздействием солнечного света создается озоновый экран, защищающий живые организмы от космического излучения. Выше - мезо- , термо- и экзосферы.

Погода и климат

Нижний слой атмосферы называется тропосферой. В ней происходят явления, определяющие погоду. Вследствие неравномерного нагрева поверхности Земли солнечной радиацией, в тропосфере непрестанно проходит циркуляция больших масс воздуха. Основными воздушными течениями в атмосфере Земли является пассаты в полосе до 30 ° вдоль экватора и западные ветры умеренного пояса в полосе от 30 ° до 60 °. Другим фактором переноса тепла является система океанических течений.

Вода оказывает на поверхности земли постоянный круговорот. Испаряясь с поверхности вод и суши, при благоприятных условиях водяной пар поднимается вверх в атмосфере, что приводит к образованию облаков. Вода возвращается на поверхность земли в виде атмосферных осадков и стекает к морей и океанов системой год.

Количество солнечной энергии, которую получает поверхность Земли уменьшается с ростом широты. Чем дальше от экватора, тем меньше угол падения солнечных лучей на поверхность, и тем больше расстояние, которое должен пройти луч в атмосфере. Вследствие этого среднегодовая температура на уровне моря уменьшается примерно на 0.4 ° ​​C на один градус широты. Поврехню Земли разделяют на широтные пояса из примерно одинаковым климатом: тропический, субтропический, умеренный и полярный. Классификация климатов зависит от температуры и количества осадков. Наибольшее признание получила классификация климатов Кеппена, по которой выделяют пять широких групп - влажные тропики, пустыня, влажные средние широты, континентальный климат, холодный полярный климат. Каждая из этих групп разделяется на специфические пидрупы.

Влияние человека на атмосферу Земли

Атмосфера Земли испытывает значительное влияние жизнедеятельности человека. Около 300 млн автомобилей ежегодно выбрасывают в атмосферу 400 млн т оксидов углерода, более 100 млн т углеводов, сотни тысяч тонн свинца. Мощные производители выбросов в атмосферу: ТЭС, металлургическая, химическая, нефтехимическая, целлюлозная и другие отрасли промышленности, автотранспорт.

Систематическое вдыхание загрязненного воздуха заметно ухудшает здоровье людей. Газообразные и пылевые примеси могут оказывать воздуху неприятного запаха, раздражать слизистые оболочки глаз, верхних дыхательных путей и тем самым снижать их защитные функции, быть причиной хронических бронхитов и заболеваний легких. Многочисленные исследования показали, что на фоне патологических отклонений в организме (заболевания легких, сердца, печени, почек и других органов) вредное воздействие атмосферного загрязнения проявляется сильнее. Важной экологической проблемой стало выпадение кислотных дождей. Ежегодно при сжигании топлива в атмосферу поступает до 15 млн т двуокиси серы, который, сочетаясь с водой, образует слабый раствор серной кислоты, что вместе с дождем выпадает на землю. Кислотные дожди негативно влияют на людей, урожай, сооружения и т.д.

Загрязнение атмосферного воздуха может также косвенно влиять на здоровье и санитарные условия жизни людей.

Накопление в атмосфере углекислого газа может вызвать потепление климата в результате парникового эффекта. Суть его заключается в том, что слой двуокиси углекислого газа, который свободно пропускает солнечную радиацию к Земле, будет задерживать возвращения в верхние слои атмосферы теплового излучения. В связи с этим в нижних слоях атмосферы повышаться температура, что, в свою очередь, приведет к таянию ледников, снегов, подъема уровня океанов и морей, затопление значительной части суши.

История

Земля образовалась примерно 4540 миллионов лет назад с дискообразной протопланетарном облака вместе с другими планетами Солнечной системы. Формирования Земли в результате аккреции продолжалось 10-20 млн лет. Сначала Земля была полностью расплавленной, но постепенно остыла, и на ее поверхности образовалась тонкая твердая оболочка - земная кора.

Вскоре после образования Земли, примерно 4530 миллионов лет назад, образовалась Луна. Современная теория образования единого естественного спутника Земли утверждает, что это произошло как результат столкновения с массивным небесным телом, которое получило название Тея.
Первичная атмосфера Земли образовалась в результате дегазации горных пород и вулканической активности. Из атмосферы сконденсировавшаяся вода, образовав Мировой океан. Несмотря на то, что Солнце к тому времени светило на 70% слабее, чем сейчас, геологические данные показывают, что океан не замерз, что, возможно, связано с парниковым эффектом. Примерно 3,5 млрд лет назад сформировалось магнитное поле Земли, что защитило ее атмосферу от солнечного ветра.

Образование Земли и начальный этап ее развития (продолжительностью примерно 1,2 млрд лет) относятся к догеологичнои истории. Абсолютный возраст древнейших горных пород составляет свыше 3,5 млрд лет и, начиная с этого момента, ведет отсчет геологическая история Земли, которая делится на два неравных этапа: докембрий, занимающий примерно 5 / 6 всего геологического летоисчисления (около 3 млрд. лет) , и фанерозой, охватывающей последние 570 млн. лет. Около 3-3,5 млрд лет назад в результате закономерной эволюции материи на Земле возникла жизнь, началось развитие биосферы - совокупности всех живых организмов (так называемая живое вещество Земли), которая существенно повлияла на развитие атмосферы, гидросферы и геосферы (по крайней мере в части осадочной оболочки). В результате кислородной катастрофы деятельность живых организмов изменила состав атмосферы Земли, обогатив ее кислородом, что создало возможность для развития аэробных живых существ.

Новый фактор, который оказывает мощное влияние на биосферу и даже геосферу - деятельность человечества, появившееся на Земле после появления в результате эволюции человека менее 3 млн лет назад (единства относительно датировки не достигнуто и некоторые исследователи считают - 7 млн лет назад) . Соответственно, в процессе развития биосферы выделяют образования и дальнейшее развитие ноосферы - оболочки Земли, на которую большое влияние оказывает деятельность человека.

Высокий темп роста населения Земли (численность земного населения составляла 275 млн в 1000 году, 1,6 млрд в 1900 году и примерно 6,7 млрд в 2009 году) и усиление влияния человеческого общества на природную среду выдвинули проблемы рационального использования всех природных ресурсов и охраны природы.

Экватор - это воображаемая круговая линия, которая опоясывает весь земной шар и проходит через центр Земли.

Линия экватора перпендикулярна оси вращения нашей планеты и находится на равном расстоянии от обоих полюсов.

Экватор: что это и зачем он нужен?

Итак, экватор - это воображаемая линия. Зачем серьезным ученым понадобилось воображать какие-то линии, очерчивающие Землю? Затем, что экватор, как и меридианы, параллели и прочие разделители планеты, которые существуют только в воображении и на бумаге, дают возможность производить подсчеты, ориентироваться в море, на суше и в воздухе, определять месторасположение различных объектов и т.д.

Экватор делит Землю на Северное и Южное полушария и служит началом отсчета географической широты: широта экватора равна 0 градусов. Он помогает ориентироваться в климатических поясах планеты. Приэкваториальная часть Земли получает самое большое количество солнечных лучей. Соответственно, чем дальше территории расположены от экваториальной линии и чем ближе они к полюсам, тем меньше солнца им достается.

Приэкваториальная область - это вечное лето, где воздух всегда горячий и очень влажный из-за постоянных испарений. На экваторе день всегда равен ночи. Солнце бывает в зените - светит вертикально вниз - только на экваторе и только дважды в год (в те дни, на которые приходятся дни равноденствий в большинстве географических поясов Земли).

Экватор проходит через 14 государств. Города, расположенные непосредственно на линии: Макапа (Бразилия), Кито (Эквадор), Накуру и Кисуму (Кения), Понтинак (остров Калиманта, Индонезия), Мбандака (Республика Конго), Кампала (столица Уганды).

Длина экватора

Экватор является самой длинной параллелью Земли. Его длина составляет 40.075 км. Первым, кто смог приблизительно вычислить протяженность экватора, был Эратосфен - древнегреческий астроном и математик. Для этого он измерял время, в течение которого солнечные лучи достигали дна глубокого колодца. Это помогло ему вычислить длину радиуса Земли и, соответственно, экватора благодаря формуле длины окружности.

Следует отметить, что Земля не является идеальной окружностью, поэтому радиус ее в разных частях немого отличается. К примеру, радиус на экваторе равен 6378,25 км, а радиус на полюсах - 6356,86 км. Поэтому для решения задач по вычислению длины экватора радиус принимают равным 6371 км.

Длина экватора является одной из ключевых метрических характеристик нашей планеты. Ее используют для вычислений не только в географии и геодезии, но в астрономии и астрологии.

Для понятия движений земной коры и вулканизма, образова­ния минералов, пород и процессов, происходящих на поверхности Земли (выветривание, влияние климатических факторов, кругово­рот веществ в природе, образования почвы и др.), необходимо иметь представление о размерах, строении и физическом состоя­нии Земли.

Земля, третья от Солнца планета Солнечной системы , вращаю­щаяся вокруг нее по эллиптической орбите (близкой к круговой) со средней скоростью 29,765 км/с, на среднем расстоянии 149,6 млн. км за период, равный 365,24 средних солнечных суток, имеет спутник - Луну, вращающуюся вокруг Земли на среднем расстоянии 384 000 км.

Измерения различными методами показали, что Земля имеет не совсем круглую форму - она немного сплюснута в направле­нии полюсов. Форма Земли - геоид, приближенно - трехосный эллипсоид, сфероид.

Экваториальный радиус Земли (расстояние от центра Земли до экватора) равняется 6378,160 км, а полярный радиус (расстоя­ние от центра Земли до полюса) - 6356,777 км. За средний радиус Земли принимают 6371,032 км. Разница между этими ра­диусами составляет 21,383 км. Площадь поверхности Земли состав­ляет 510,2 млн. км2, объем - 1,083-1012 км2, плотность - 5518 кг/см3, масса -5976-1021 кг.

Земля обладает магнитным и тесно связанными с ним электри­ческими полями . Гравитационное поле Земли обусловливает сфе­рическую форму Земли, существование атмосферы.

В составе Земли преобладают железо (34,6 %), кислород (29,5%), кремний (15,2%), магний (12,7%). От поверхности Земли к центру возрастают давление, плотность и температура; давление в центре Земли составляет 3,6-10й Н/м2, плотность — около 12,5-103 кг/м3, температура - 4000-5000 °С. Основные типы земной коры - материковый и океанический; в переходной зоне от материка к океану развита кора промежуточного строения.

Большая часть поверхности Земли занята Мировым океаном (361,1 млн. км2, или 70,8%). Средняя глубина океана - около 3800 м, наибольшая - 11022 м (Марианский желоб в Тихом океане), объем воды- 1370 млн. км3, средняя соленость - 35 г/л.

Суша составляет 149,1 млн. км2 (29,2 %) и образует 6 матери­ков и острова. Она поднимается над уровнем Мирового океана в среднем на 875 м (наибольшая высота 8848 м - гора Джомо­лунгма (Эверест); горы занимают свыше 1/3 поверхности суши. Пустыни покрывают около 20 % поверхности суши, саванны и редколесья - около 20, леса - около 30, ледники - свыше 10%. Свыше 10 % суши занято сельскохозяйственными угодьями.

В течение длительного времени на Земле происходили процес­сы превращения и перемещения материи, в результате чего она расчленилась на ряд оболочек, или геосфер, последовательно сме­няющих одна другую. Различают следующие геосферы Земли : атмосферу, гидросферу и литосферу, за которой находятся проме­жуточная оболочка и ядро. Помимо перечисленных сфер выделя­ют еще биосферу.

Геосферы Земли очень различаются между собой по химичес­кому составу и физическим свойствам (температура, плотность, давление).

Атмосфера окружает Землю мощной газовой оболочкой высотой до 3 тыс. км, которую в зависимости от химического со­става и плотности химических элементов разделяют на тропосфе­ру, стратосферу, ионосферу.

Тропосфера размещена над поверхностью Земли на высоте 10-15 км. В состав воздуха тропосферы входят азот (78%), кислород (21%), углекислый газ (0,03%), аргон, неон, ксенон и др. Тропосфера характеризуется тем, что давление воздуха в ней с увеличением высоты уменьшается, а температура понижа­ется и на расстоянии 10-12 км от Земли достигает 55 °С. Воздух в тропосфере очень насыщен, здесь происходит наибольшее пере­мещение воздушных масс.

Стратосфера размещается на высоте 50-100 км. Она характе­ризуется разреженным воздухом.

Ионосфера расположена выше стратосферы. В ней очень раз­режен воздух и под влиянием ультрафиолетовых лучей Солнца происходит образование ионов, которые рассеиваются в космосе.

Гидросфера - это моря, океаны, озера, реки, подземные воды, ледники и снежные покровы. Она занимает до 71 % поверх­ности Земли. В состав гидросферы входит свыше 40 химических элементов, среди которых 85,45% кислорода, 10,63 % водорода, 2,06% хлора, 1,14% натрия и 0,72% других элементов. Гидро­сфера наиболее активно действует на перераспределение химичес­ких соединений в природе.

Биосфера - это пространство, занятое живыми организма­ми (в воздухе - до высоты 10 км, в океанах - до глубины 11 км), населяющими литосферу, гидросферу и атмосферу. По В. И. Вер­надскому, биосфера - это зона жизни.

На протяжении всех геологических периодов биосфера разви­валась и изменялась. Живая субстанция биосферы содержит до 75 % воды, почти 25 % сухого вещества и в нем 2 % зольных (несжигаемых, или минеральных) веществ. В органической суб­станции содержится 50 % углерода, ассимилированного с воздуха и воды.

Новый фактор, оказывающий мощное влияние на биосферу,- производственная деятельность человека, появившегося на Земле не менее 3 млн. лет назад.

Значительное влияние на биосферу оказывают климатические условия различных зон Земли . Максимальная температура по­верхности суши в тропических пустынях Африки и Северной Аф­рики- 57-58 °С, а минимальная в центральных районах Антарк­тиды - около 90 °С. Распределение по широте и высоте над уров­нем моря солнечной энергии, поступающей на Землю, вызвало в пределах географической оболочки закономерную смену климата, растительности, почв, животного мира, в результате чего образо­вались физико-географические пояса, физико-географические зоны, высотная поясность.

Образование Земли и начальный этап ее развития относятся к догеологической истории. Абсолютный возраст наиболее древ­них пород составляет свыше 3,5 млрд. лет. Геологическая история Земли делится на два неравных этапа: докембрий, занимающий около 5/6 всего геологического летоисчисления (около 3 млрд. лет), и фанерозой, охватывающий последние 570 млн. лет.

Из геосфер наиболее интересным для почвоведения являются зона осадочных пород, биосфера, кора выветривания и значитель­ная часть атмосферы (тропосфера) со средней толщиной 8- 18 км в зависимости от географической широты.

Тропосфера, биосфера и кора выветривания имеют прямое и побочное влияние на круговорот веществ в природе, на почвообразующие породы, почвы, которые покрывают значительную часть континентов Земли, на развитие растений, животных и деятель­ность человека.

Литосфера - внешняя сфера «твердой» Земли, включаю­щая, земную кору и часть верхней мантии,- имеет толщину по Ферсману до 1200 км. Наиболее глубокая ее часть - передотитовая оболочка - состоит преимущественно из минералов оливина и роговой обманки. Удельная масса ее достигает 3,6-4, а температура - 1200-1500 °С. Из химических элементов в ней преобладает кислород, кремний, железо, магний, кальций, хром, алюминий, ванадий.

Промежуточная оболочка, или мантия, находит­ся между литосферой и ядром и распространяется до глубины 2900 км. Эта оболочка подразделяется на две части - верхнюю, в составе которой преобладают кислород, кремний и, очевидно, магний, и нижнюю, в состав которой входят, главным образом, кислород, кремний, железо, магний и никель. Граница между эти­ми двумя слоями проходит на глубине 900 км.

Ядро Земли располагается с глубины 2900 км от поверх­ности Земли и до ее центра . Мнения ученых относительно со­става ядра расходятся. Одни считают, что ядро состоит, главным образом, из железа и никеля, другие - что состав ядра немного отличается от состава нижней мантии, но вещество там находится в сильно уплотненном, так называемом металлизированном со­стоянии.

Возможно, Вас так же заинтересует:



gastroguru © 2017