Как найти среднее значение ряда чисел. Средневзвешенное значение - что это и как его вычислить

По дисциплине: Статистика

Вариант № 2

Средние величины, применяемые в статистике

Введение………………………………………………………………………….3

Теоретическое задание

Средняя величина в статистике, ее сущность и условия применения.

1.1. Сущность средней величины и условия применения………….4

1.2. Виды средних величин……………………………………………8

Практическое задание

Задача 1,2,3………………………………………………………………………14

Заключение……………………………………………………………………….21

Список используемой литературы……………………………………………...23

Введение

Данная контрольная работа состоит из двух частей – теоретической и практической. В теоретической части будет подробно рассмотрена такая важная статистическая категория как средняя величина с целью выявления её сущности и условий применения, а также выделения видов средних и способов их расчёта.

Статистика, как известно, изучает массовые социально-экономические явления. Каждое из этих явлений может иметь различное количественное выражение одного и того же признака. Например, заработная плата одной и той же профессии рабочих или цены на рынке на один и тот же товар и т.д. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Для изучения какой-либо совокупности по варьирующим (количественно изменяющимся) признакам статистика использует средние величины.

Сущность средней величины

Средняя величина - это обобщающая количественная характеристика совокупности однотипных явлений по одному варьирующему признаку. В экономической практике используется широкий круг показателей, вычисленных в виде средних величин.

Важнейшее свойство средней величины заключается в том, что она представляет значение определенного признака во всей совокупности одним числом, несмотря на количественные различия его у отдельных единиц совокупности, и выражает то общее, что присуще всем единицам изучаемой совокупности. Таким образом, через характеристику единицы совокупности она характеризует всю совокупность в целом.

Средние величины связаны с законом больших чисел. Суть этой связи заключается в том, что при осреднении случайные отклонения индивидуальных величин в силу действия закона больших чисел взаимопогашаются и в средней выявляется основная тенденция развития, необходимость, закономерность. Средние величины позволяют сравнивать показатели, относящиеся к совокупностям с различной численностью единиц.

В современных условиях развития рыночных отношений в экономике средние служат инструментом изучения объективных закономерностей социально-экономических явлений. Однако в экономическом анализе нельзя ограничиваться лишь средними показателями, так как за общими благоприятными средними могут скрываться и крупные серьезные недостатки в деятельности отдельных хозяйствующих субъектов, и ростки нового, прогрессивного. Например, распределение населения по доходу позволяет выявлять формирование новых социальных групп. Поэтому наряду со средними статистическими данными необходимо учитывать особенности отдельных единиц совокупности.

Средняя величина являются равнодействующей всех факторов, оказывающих влияние на изучаемое явление. То есть, при расчете средних величин взаимопогашаются влияние случайных (пертурбационных, индивидуальных) факторов и, таким образом, возможно определение закономерности, присущей исследуемому явлению. Адольф Кетле подчеркивал, что значение метода средних величин состоит в возможности перехода от единичного к общему, от случайного к закономерному, и существование средних величин является категорией объективной действительности.

Статистика изучает массовые явления и процессы. Каждое из таких явлений обладает как общими для всей совокупности, так и особенными, индивидуальными свойствами. Различие между индивидуальными явлениями называют вариацией. Другое свойство массовых явлений - присущая им близость характеристик отдельных явлений. Итак, взаимодействие элементов совокупности приводит к ограничению вариации хотя бы части их свойств. Эта тенденция существует объективно. Именно в её объективности заключается причина широчайшего применения средних величин на практике и в теории.

Средней величиной в статистике называется обобщающий показатель, характеризующий типичный уровень явления в конкретных условиях места и времени, отражающий величину варьирующего признака в расчёте на единицу качественно однородной совокупности.

В экономической практике используется широкий круг показателей, вычисленный в виде средних величин.

С помощью метода средних величин статистика решает много задач.

Главное значение средних состоит в их обобщающей функции, то есть замене множества различных индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений.

Если средняя величина обобщает качественно однородные значения признака, то она является типической характеристикой признака в данной совокупности.

Однако неправильно сводить роль средних величин только к характеристике типичных значений признаков в однородных по данному признаку совокупностях. На практике значительно чаще современная статистика использует средние величины, обобщающие явно однородные явления.

Средняя величина национального дохода на душу населения, средняя урожайность зерновых культур по всей стране, среднее потребление разных продуктов питания – это характеристики государства как единой народнохозяйственной системы, это так называемые системные средние.

Системные средние могут характеризовать как пространственные или объектные системы, существующие одномоментно (государство, отрасль, регион, планета Земля и т.д.), так и динамические системы, протяжённые во времени (год, десятилетие, сезон и т.д.).

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные. Например, курс акций корпорации в целом определяется ее финансовым положением. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

Вычисление среднего - один из распространённых приёмов обобщения; средний показатель отражает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости.

Средняя – это сводная характеристика закономерностей процесса в тех условиях, в которых он протекает.

Каждая средняя характеризует изучаемую совокупность по какому-либо одному признаку, но для характеристики любой совокупности, описания её типических черт и качественных особенностей нужна система средних показателей. Поэтому в практике отечественной статистики для изучения социально-экономических явлений, как правило, исчисляется система средних показателей. Так, например, показатель средней заработной платы оцениваются совместно с показателями средней выработки, фондовооружённости и энерговооружённости труда, степенью механизации и автоматизации работ и др.

Средняя должна вычисляться с учётом экономического содержания исследуемого показателя. Поэтому для конкретного показателя, используемого в социально экономическом анализе, можно исчислить только одно истинное значение средней на базе научного способа расчёта.

Средняя величина это один из важнейших обобщающих статистических показателей, характеризующий совокупность однотипных явлений по какому-либо количественно варьирующему признаку. Средние в статистике это обобщающие показатели, числа, выражающие типичные характерные размеры общественных явлений по одному количественно варьирующему признаку.

Виды средних величин

Виды средних величин различаются прежде всего тем, какое свойство, какой параметр исходной варьирующей массы индивидуальных значений признака должен быть сохранен неизменным.

Средняя арифметическая

Средней арифметической величиной называется такое среднее значение признака, при вычислении которого общий объём признака в совокупности остаётся неизменным. Иначе можно сказать, что средняя арифметическая величина – среднее слагаемое. При её вычислении общий объём признака мысленно распределяется поровну между всеми единицами совокупности.

Средняя арифметическая применяется, если известны значения осредняемого признака (х) и количество единиц совокупности с определённым значением признака (f).

Средняя арифметическая бывает простой и взвешенной.

Средняя арифметическая простая

Простая используется, если каждое значение признака х встречается один раз, т.е. для каждого х значение признака f=1, или если исходные данные не упорядочены и неизвестно, сколько единиц имеют определённые значения признака.

Формула средней арифметической простой имеет вид.

,

Каждый человек в современном мире, планируя взять кредит или делая запасы овощей на зиму, периодически сталкивает с таким понятием, как «средняя величина». Давайте узнаем: что это такое, какие ее виды и классы существуют и зачем она применяется в статистике и других дисциплинах.

Средняя величина - это что такое?

Подобное название (СВ) носит обобщенная характеристика совокупности однородных явлений, определяемая по какому-либо одному количественному варьируемому признаку.

Однако люди далекие, от столь заумных определений, понимают это понятие, как среднее количество чего-то. Например, прежде чем взять кредит, сотрудник банка обязательно попросит потенциального клиента предоставить данные о среднем доходе за год, то есть общую сумму зарабатываемых человеком средств. Она вычисляется путем суммирования заработанного за весь год и разделения на количество месяцев. Таким образом, банк сможет определить, сумеет ли его клиент отдать долг в срок.

Зачем она используется?

Как правило, средние величины широко применяются для того, чтобы дать итоговую характеристику определенных общественных явлений, носящих массовый характер. Также они могут быть использованы для менее масштабных расчетов, как в случае с кредитом, в приведенном выше примере.

Однако чаще всего средние величины все же применяются для глобальных целей. В качестве примера одного из них можно привести вычисление количества потребляемой гражданами электроэнергии на протяжении одного календарного месяца. На основе полученных данных в дальнейшем устанавливаются максимальные нормы для категорий населения, пользующихся льготами от государства.

Также с помощью средних величин разрабатывается гарантийный срок службы тех или иных бытовых приборов, автомобилей, зданий и т. п. На основе собранных таким способом данных когда-то были разработаны современные нормы труда и отдыха.

Фактически любое явление современной жизни, носящее массовый характер, тем или иным образом обязательно связано с рассматриваемым понятием.

Сферы применения

Данное явление широко применяется практически во всех точных науках, особенно носящих экспериментальный характер.

Поиск среднего имеет огромное значение в медицине, инженерных дисциплинах, кулинарии, экономике, политике и т. п.

Основываясь на данных, полученных от подобных обобщений, разрабатывают лечебные препараты, учебные программы, устанавливают минимальные прожиточные минимумы и зарплаты, строят учебные графики, производят мебель, одежду и обувь, предметы гигиены и многое другое.

В математике данный термин именуется «средним значением» и применяется для осуществления решений различных примеров и задач. Наиболее простыми из них являются сложение и вычитание с обычными дробями. Ведь, как известно, для решения подобных примеров необходимо привести обе дроби к общему знаменателю.

Также в царице точных наук часто применяется близкий по смыслу термин «значение среднее случайной величины». Большинству он более знаком как «математическое ожидание», чаще рассматриваемое в теории вероятности. Стоит отметить, что подобное явление также применяется и при произведении статистических вычислений.

Средняя величина в статистике

Однако чаще всего изучаемое понятие используется в статистике. Как известно, эта наука сама по себе специализируется на вычислении и анализе количественной характеристики массовых общественных явлений. Поэтому средняя величина в статистике используется в качестве специализированного метода достижения ее основных задач - сбора и анализа информации.

Суть данного статистического метода заключается в замене индивидуальных уникальных значений рассматриваемого признака определенной уравновешенной средней величиной.

В качестве примера можно привести знаменитую шутку о еде. Итак, на неком заводе по вторникам на обед его начальство обычно ест мясную запеканку, а простые рабочие - тушеную капусту. На основе этих данных можно сделать вывод, что в среднем коллектив завода по вторникам обедает голубцами.

Хотя данный пример слегка утрирован, однако он иллюстрирует главный недостаток метода поиска средней величины - нивелирование индивидуальных особенностей предметов или личностей.

В средних величин применяются не только для анализа собранной информации, но и для планирования и прогнозирования дальнейших действий.

Также с его помощью производится оценка достигнутых результатов (например, выполнение плана по выращиванию и сбору урожая пшеницы за весенне-летний сезон).

Как правильно рассчитать

Хотя в зависимости от вида СВ существуют разные формулы ее вычисления, в общей теории статистики, как правило, применяется всего один способ расчета средней величины признака. Для этого нужно сначала сложить вместе значения всех явлений, а затем разделить получившуюся сумму на их количество.

При произведении подобных вычислений стоит помнить, что средняя величина всегда имеет ту же размерность (или единицы измерения), что и отдельная единица совокупности.

Условия правильного вычисления

Рассмотренная выше формула весьма проста и универсальна, так что ошибиться в ней практически невозможно. Однако всегда стоит учитывать два аспекта, иначе полученные данные не будут отражать реальную ситуацию.


Классы СВ

Найдя ответы на основные вопросы: "Средняя величина - это что такое?", "Где применяется она?" и "Как можно вычислить ее?", стоит узнать, какие классы и виды СВ существуют.

Прежде всего это явление делится на 2 класса. Это структурные и степенные средние величины.

Виды степенных СВ

Каждый из вышеперечисленных классов, в свою очередь, делится на виды. У степенного класса их четыре.

  • Средняя арифметическая величина - это наиболее распространенный вид СВ. Она являет собою среднее слагаемое, при определении коего общий объем рассматриваемого признака в совокупности данных поровну распределяется между всеми единицами данной совокупности.

    Этот вид делится на подвиды: простая и взвешенная арифметическая СВ.

  • Средняя гармоническая величина - это показатель, обратный средней арифметической простой, вычисляемый из обратных значений рассматриваемого признака.

    Она применяется в тех случаях, когда известны индивидуальные значения признака и произведение, а данные частоты - нет.

  • Средняя геометрическая величина чаще всего применима при анализе темпов роста экономических явлений. Она дает возможность сохранять в неизменном виде произведение индивидуальных значений данной величины, а не сумму.

    Также бывает простой и взвешенной.

  • Средняя квадратическая величина используется при расчете отдельных показателе показателей, таких как коэффициент вариации, характеризующего ритмичность выпуска продукции и т. п.

    Также с ее помощью вычисляются средние диаметры труб, колес, средние стороны квадрата и подобных фигур.

    Как и все остальные виды средних СВ, среднеквадратическая бывает простой и взвешенной.

Виды структурных величин

Помимо средних СВ, в статистике довольно часто используются структурные виды. Они лучше подходят для расчета относительных характеристик величин варьирующего признака и внутреннего строения рядов распределения.

Таких видов существует два.


У этого термина существуют и другие значения, см. среднее значение.

Сре́днее арифмети́ческое (в математике и статистике) множества чисел - сумма всех чисел, делённая на их количество. Является одной из наиболее распространённых мер центральной тенденции.

Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами.

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

Введение

Обозначим множество данных X = (x 1 , x 2 , …, x n ), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (x ¯ {\displaystyle {\bar {x}}} , произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки x i из этой совокупности μ = E{x i } есть математическое ожидание этой выборки.

На практике разница между μ и x ¯ {\displaystyle {\bar {x}}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ {\displaystyle {\bar {x}}} (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

X ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + ⋯ + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).}

Если X - случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X . Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n , тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).

Примеры

  • Для трёх чисел необходимо сложить их и разделить на 3:
x 1 + x 2 + x 3 3 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}}{3}}.}
  • Для четырёх чисел необходимо сложить их и разделить на 4:
x 1 + x 2 + x 3 + x 4 4 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.}

Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

Непрерывная случайная величина

Для непрерывно распределённой величины f (x) {\displaystyle f(x)} среднее арифметическое на отрезке [ a ; b ] {\displaystyle } определяется через определённый интеграл:

F (x) ¯ [ a ; b ] = 1 b − a ∫ a b f (x) d x {\displaystyle {\overline {f(x)}}_{}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx}

Некоторые проблемы применения среднего

Отсутствие робастности

Основная статья: Робастность в статистике

Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы, из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон, подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса. Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

Сложный процент

Основная статья: Окупаемость инвестиций

Если числа перемножать , а не складывать , нужно использовать среднее геометрическое, а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % - это 30 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 30 %, они в конце второго года стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года всего на $5.1, средний рост в 8,2 % даёт конечный результат $35.1:

[$30 (1 - 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое значение: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

Сложный процент в конце 2 года: 90 % * 130 % = 117 % , то есть общий прирост 17 %, а среднегодовой сложный процент 117 % ≈ 108.2 % {\displaystyle {\sqrt {117\%}}\approx 108.2\%} , то есть среднегодовой прирост 8,2 %.

Направления

Основная статья: Статистика направлений

При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно 1 ∘ + 359 ∘ 2 = {\displaystyle {\frac {1^{\circ }+359^{\circ }}{2}}=} 180°. Это число неверно по двум причинам.

  • Во-первых, угловые меры определены только для диапазона от 0° до 360° (или от 0 до 2π при измерении в радианах). Таким образом, ту же пару чисел можно было бы записать как (1° и −1°) или как (1° и 719°). Средние значения каждой из пар будут отличаться: 1 ∘ + (− 1 ∘) 2 = 0 ∘ {\displaystyle {\frac {1^{\circ }+(-1^{\circ })}{2}}=0^{\circ }} , 1 ∘ + 719 ∘ 2 = 360 ∘ {\displaystyle {\frac {1^{\circ }+719^{\circ }}{2}}=360^{\circ }} .
  • Во-вторых, в данном случае, значение 0° (эквивалентное 360°) будет геометрически лучшим средним значеним, так как числа отклоняются от 0° меньше, чем от какого-либо другого значения (у значения 0° наименьшая дисперсия). Сравните:
    • число 1° отклоняется от 0° всего на 1°;
    • число 1° отклоняется от вычисленного среднего, равного 180°, на 179°.

Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° - один градус, между 0° и 1° - тоже 1°, в сумме - 2°).

Виды средних величин и методы их расчета

На этапе статистической обработки могут быть поставлены самые различные задачи исследования, для решения которых нужно выбрать соответствующую среднюю. При этом необходимо руководствоваться следующим правилом: величины, которые представляют собой числитель и знаменатель средней, должны быть логически связаны между собой.

  • степенные средние ;
  • структурные средние .

Введем следующие условные обозначения:

Величины, для которых исчисляется средняя;

Средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений;

Частота (повторяемость индивидуальных значений признака).

Различные средние выводятся из общей формулы степенной средней:

(5.1)

при k = 1 - средняя арифметическая; k = -1 - средняя гармоническая; k = 0 - средняя геометрическая; k = -2 - средняя квадратическая.

Средние величины бывают простые и взвешенные. Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи с чем каждый вариант приходится умножать на эту численность. Иными словами, «весами» выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней .

Средняя арифметическая - самый распространенный вид средней. Она используется, когда расчет осуществляется по несгруппированным статистическим данным, где нужно получить среднее слагаемое. Средняя арифметическая - это такое среднее значение признака, при получении которого сохраняется неизменным общий объем признака в совокупности.

Формула средней арифметической (простой ) имеет вид

где n - численность совокупности.

Например, средняя заработная плата работников предприятия вычисляется как средняя арифметическая:

Определяющими показателями здесь являются заработная плата каждого работника и число работников предприятия. При вычислении средней общая сумма заработной платы осталась прежней, но распределенной как бы между всеми работниками поровну. К примеру, необходимо вычислить среднюю заработную плату работников небольшой фирмы, где заняты 8 человек:

При расчете средних величин отдельные значения признака, который осредняется, могут повторяться, поэтому расчет средней величины производится по сгруппированным данным. В этом случае речь идет об использовании средней арифметической взвешенной , которая имеет вид

(5.3)

Так, нам необходимо рассчитать средний курс акций какого-то акционерного общества на торгах фондовой биржи. Известно, что сделки осуществлялись в течение 5 дней (5 сделок), количество проданных акций по курсу продаж распределилось следующим образом:

1 - 800 ак. - 1010 руб.

2 - 650 ак. - 990 руб.

3 - 700 ак. - 1015 руб.

4 - 550 ак. - 900 руб.

5 - 850 ак. - 1150 руб.

Исходным соотношением для определения среднего курса стоимости акций является отношение общей суммы сделок (ОСС) к количеству проданных акций (КПА):

ОСС = 1010 ·800+990·650+1015·700+900·550+1150·850= 3 634 500;

КПА = 800+650+700+550+850=3550.

В этом случае средний курс стоимости акций был равен

Необходимо знать свойства арифметической средней, что очень важно как для ее использования, так и при ее расчете. Можно выделить три основных свойства, которые наиболее всего обусловили широкое применение арифметической средней в статистико-экономических расчетах.

Свойство первое (нулевое ): сумма положительных отклонений индивидуальных значений признака от его среднего значения равна сумме отрицательных отклонений. Это очень важное свойство, поскольку оно показывает, что любые отклонения (как с +, так и с -), вызванные случайными причинами, взаимно будут погашены.

Доказательство:

Свойство второе (минимальное ): сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа (а), т.е. есть число минимальное.

Доказательство.

Составим сумму квадратов отклонений от переменной а:

(5.4)

Чтобы найти экстремум этой функции, необходимо ее производную по а приравнять нулю:

Отсюда получаем:

(5.5)

Следовательно, экстремум суммы квадратов отклонений достигается при . Этот экстремум - минимум, так как функция не может иметь максимума.

Свойство третье : средняя арифметическая постоянной величины равна этой постоянной: при а = const.

Кроме этих трех важнейших свойств средней арифметической существуют так называемые расчетные свойства , которые постепенно теряют свою значимость в связи с использованием электронно-вычислительной техники:

  • если индивидуальное значение признака каждой единицы умножить или разделить на постоянное число, то средняя арифметическая увеличится или уменьшится во столько же раз;
  • средняя арифметическая не изменится, если вес (частоту) каждого значения признака разделить на постоянное число;
  • если индивидуальные значения признака каждой единицы уменьшить или увеличить на одну и ту же величину, то средняя арифметическая уменьшится или увеличится на ту же самую величину.

Средняя гармоническая . Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1.

Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1:

К примеру, нам нужно вычислить среднюю скорость двух автомашин, прошедших один и тот же путь, но с разной скоростью: первая - со скоростью 100 км/ч, вторая - 90 км/ч. Применяя метод средней гармонической, мы вычисляем среднюю скорость:

В статистической практике чаще используется гармоническая взвешенная, формула которой имеет вид

Данная формула используется в тех случаях, когда веса (или объемы явлений) по каждому признаку не равны. В исходном соотношении для расчета средней известен числитель, но неизвестен знаменатель.

Например, при расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам не известно количество реализованных единиц (речь идет о разных товарах), но известны суммы реализаций этих различных товаров. Допустим, необходимо узнать среднюю цену реализованных товаров:

Получаем

Средняя геометрическая . Чаще всего средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000). Существуют формулы для простой и взвешенной средней геометрической.

Для простой средней геометрической

Для взвешенной средней геометрической

Средняя квадратическая величина . Основной сферой ее применения является измерение вариации признака в совокупности (расчет среднего квадратического отклонения).

Формула простой средней квадратической

Формула взвешенной средней квадратической

(5.11)

В итоге можно сказать, что от правильного выбора вида средней величины в каждом конкретном случае зависит успешное решение задач статистического исследования. Выбор средней предполагает такую последовательность:

а) установление обобщающего показателя совокупности;

б) определение для данного обобщающего показателя математического соотношения величин;

в) замена индивидуальных значений средними величинами;

г) расчет средней с помощью соответствующего уравнения.

Средние величины и вариация

Средняя величина - это обобщающий показатель, который характеризует качественно однородную совокупность по определенному количественному признаку. Например, средний возраст лиц, осужденных за кражу.

В судебной статистике средние величины используют для характеристики:

Средних сроков рассмотрения дел данной категории;

Среднего размера иска;

Среднего числа ответчиков, приходящихся на одно дело;

Среднего размера ущерба;

Средней нагрузки судей, и др.

Средняя всегда величина именованная и имеет ту же размерность, что и признак у отдельной единицы совокупности. Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному варьирующему признаку, поэтому за всякой средней скрывается ряд распределения единиц этой совокупности по изучаемому признаку. Выбор вида средней определяется содержанием показателя и исходных данных для расчета средней величины.

Все виды средних величин, используемые в статистических исследованиях, подразделяются на две категории:

1) степенные средние;

2) структурные средние.

Первая категория средних величин включает: среднюю арифметическую, среднюю гармоническую, среднюю геометрическую и среднюю квадратическую . Вторая категория - это мода и медиана . При этом каждый из перечисленных видов степенных средних величин может иметь две формы: простую и взвешенную . Простая форма средней величины используется для получения среднего значения изучаемого признака, когда расчет осуществляется по несгруппированным статистическим данным, либо когда каждая варианта в совокупности встречается только один раз. Взвешенными средними называют величины, которые учитывают, что варианты значений признака могут иметь различную численность, в связи, с чем каждый вариант приходится умножать на соответствующую частоту. Иными словами, каждый вариант «взвешивают» по своей частоте. Частоту называют статистическим весом.

Средняя арифметическая простая – самый распространенный вид средней. Она равна сумме отдельных значений признака, деленной на общее число этих значений:

,

где x 1 ,x 2 , … ,x N – индивидуальные значения варьирующего признака (варианты), а N – число единиц совокупности.

Средняя арифметическая взвешенная применяется в тех случаях, когда данные представлены в виде рядов распределения или группировок. Она вычисляется как сумма произведений вариантов на соответствующие им частоты, деленная на сумму частот всех вариантов:

где x i – значение i –й варианты признака; f i – частота i –й варианты.

Таким образом, каждое значение варианты взвешивается по своей частоте, поэтому частоты иногда называют статистическими весами.

Замечание. Когда речь идет о средней арифметической величине без указания ее вида, подразумевается средняя арифметическая простая.

Таблица 12.

Решение. Для расчета используем формулу средней арифметической взвешенной:

Таким образом, в среднем на одно уголовное дело приходится два обвиняемых.

Если вычисление средней величины производят по данным, сгруппированным в виде интервальных рядов распределения, то сначала надо определить серединные значения каждого интервала х" i , после чего рассчитать среднюю величину по формуле средней арифметической взвешенной, в которую вместо x i подставляют х" i .

Пример. Данные о возрасте преступников, осужденных за совершение кражи, представлены в таблице:

Таблица 13.

Определить средний возраст преступников, осужденных за совершение кражи.

Решение. Для того, чтобы определить средний возраст преступников на основе интервального вариационного ряда необходимо сначала найти серединные значения интервалов. Так как дан интервальный ряд с открытыми первым и последним интервалами, то величины этих интервалов принимаются равными величинам смежных закрытых интервалов. В нашем случае величина первого и последнего интервалов равны 10.

Теперь находим средний возраст преступников по формуле средней арифметической взвешенной:

Таким образом, средний возраст преступников, осужденных за совершение кражи, приближенно равен 27 лет.

Средняя гармоническая простая представляет собой величину, обратную средней арифметической из обратных значений признака:

где 1/x i – обратные значения вариантов, а N – число единиц совокупности.

Пример. Для определения средней годовой нагрузки на судей районного суда при рассмотрении уголовных дел провели обследование нагрузки 5 судей этого суда. Средние затраты времени на одно уголовное дело для каждого из обследованных судей оказались равными (в днях): 6, 0, 5, 6, 6, 3, 4, 9, 5, 4. Найти средние затраты на одно уголовное дело и среднюю годовую нагрузку на судей данного районного суда при рассмотрении уголовных дел.

Решение. Для определения средних затрат времени на одно уголовное дело, воспользуемся формулой средней гармонической простой:

Для упрощения расчетов в примере возьмем число дней в году равным 365, включая выходные (это не влияет на методику расчета, а при вычислении аналогичного показателя на практике необходимо вместо 365 дней подставить количество рабочих дней в конкретном году). Тогда средняя годовая нагрузка на судей данного районного суда при рассмотрении уголовных дел составит: 365(дней) : 5,56 ≈ 65,6 (дел).

Если бы мы для определения средних затрат времени на одно уголовное дело, воспользовались формулой средней арифметической простой, то получили бы:

365 (дней) : 5,64 ≈ 64,7 (дела), т.е. средняя нагрузка на судей оказалась меньше.

Проверим обоснованность такого подхода. Для этого воспользуемся данными о затратах времени на одно уголовное дело для каждого судьи и рассчитаем число уголовных, рассмотренных каждым из них за год.

Получим соответственно :

365(дней) : 6 ≈ 61 (дело), 365(дней) : 5,6 ≈ 65,2 (дел), 365(дней) : 6,3 ≈ 58 (дел),

365(дней) : 4,9 ≈ 74,5 (дела), 365(дней) : 5,4 ≈ 68 (дел).

Теперь вычислим среднюю годовую нагрузку на судей данного районного суда при рассмотрении уголовных дел:

Т.е. средняя годовая нагрузка такая же, как и при использовании средней гармонической.

Таким образом, использование средней арифметической в данном случае неправомерно.

В тех случаях, когда известны варианты признака, их объемные значения (произведение варианты на частоту), но неизвестны сами частоты, применяется формула средней гармонической взвешенной:

,

где x i – значения вариантов признака, а w i – объемные значения вариантов (w i = x i · f i ).

Пример. Данные о цене единицы однотипного товара, произведенного различными учреждениями уголовно-исполнительной системы, и об объемах его реализации приведены в таблице 14.

Таблица 14

Найти среднюю цену реализации товара.

Решение. При расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам неизвестно количество реализованных единиц, но известны суммы реализаций товаров. Поэтому для нахождения средней цены реализованных товаров воспользуемся формулой средней гармонической взвешенной. Получаем

Если здесь использовать формулу средней арифметической, то можно получить среднюю цену, которая будет нереальна:

Средняя геометрическая вычисляется извлечением корня степени N из произведения всех значений вариантов признака:

где x 1 ,x 2 , … ,x N – индивидуальные значения варьирующего признака (варианты), а

N – число единиц совокупности.

Этот вид средней используется для вычисления средних показателей роста рядов динамики.

Средняя квадратическая применяется для расчета среднеквадратического отклонения, являющегося показателем вариации, и будет рассмотрена ниже.

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода , или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном (упорядоченном) ряду. Упорядочение единиц статистической совокупности может быть проведено по возрастанию или убыванию вариантов изучаемого признака.

Медиана (Ме) – это величина, которая соответствует варианту, находящемуся в середине ранжированного ряда. Таким образом, медиана – это тот вариант ранжированного ряда, по обе стороны от которого в данном ряду должно находиться равное число единиц совокупности.

Для нахождения медианы сначала необходимо определить ее порядковый номер в ранжированном ряду по формуле:

где N – объем ряда (число единиц совокупности).

Если ряд состоит из нечетного числа членов, то медиана равна варианте с номером N Me . Если же ряд состоит из четного числа членов, то медиана определяется как среднее арифметическое двух смежных вариант, расположенных в середине.

Пример. Дан ранжированный ряд 1, 2, 3, 3, 6, 7, 9, 9, 10. Объем ряда N = 9, значит N Me = (9 + 1) / 2 = 5. Следовательно, Ме = 6, т.е. пятой варианте. Если дан ряд 1, 5, 7, 9, 11, 14, 15, 16, т.е. ряд с четным числом членов (N = 8), то N Me = (8 + 1) / 2 = 4,5. Значит медиана равна полусумме четвертой и пятой вариант, т.е. Ме = (9 + 11) / 2 = 10.

В дискретном вариационном ряду медиану определяют по накопленным частотам. Частоты вариант, начиная с первой, суммируются до тех пор, пока не будет превзойден номер медианы. Значение последней просуммированной варианты и будет медианой.

Пример. Найти медиану числа обвиняемых, приходящихся на одно уголовное дело, используя данные таблицы 12.

Решение. В данном случае объем вариационного ряда N = 154, следовательно, N Me = (154 + 1) / 2 = 77,5. Просуммировав частоты первой и второй варианты, получим: 75 + 43 = 118, т.е. мы превзошли номер медианы. Значит Ме = 2.

В интервальном вариационном ряду распределения сначала указывают интервал, в котором будет находиться медиана. Его называют медианным . Это первый интервал, накопленная частота которого превышает половину объема интервального вариационного ряда. Затем численное значение медианы определяется по формуле:

где x Ме – нижняя граница медианного интервала; i – величина медианного интервала; S Ме-1 – накопленная частота интервала, который предшествует медианному; f Ме – частота медианного интервала.

Пример. Найти медиану возраста преступников, осужденных за совершение кражи, на основе статистических данных, представленных в таблице 13.

Решение. Статистические данные представлены интервальным вариационным рядом, значит сначала определим медианный интервал. Объем совокупности N = 162, следовательно, медианным интервалом является интервал 18-28, т.к. это первый интервал, накопленная частота которого (15 + 90 = 105) превышает половину объема (162: 2 = 81) интервального вариационного ряда. Теперь численное значение медианы определяем по приведенной выше формуле:

Таким образом, половина осужденных за совершение кражи младше 25 лет.

Модой (Мо) называют значение признака, которое наиболее часто встречается у единиц совокупности. К моде прибегают для выявления величины признака, имеющей наибольшее распространение. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Например, для дискретного ряда, представленного в таблице 3 Мо = 1, так как этому значению варианты соответствует наибольшая частота - 75. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой.

Его значение находят по формуле:

где x Mo – нижняя граница модального интервала; i – величина модального интервала; f Мо – частота модального интервала; f Мо-1 – частота интервала, предшествующего модальному; f Мо+1 – частота интервала, следующего за модальным.

Пример. Найтимодувозраста преступников, осужденных за совершение кражи, данные о которых представлены в таблице 13.

Решение. Наибольшая частота соответствует интервалу 18-28, следовательно, мода должна находиться в этом иртервале. Ее величину определяем по приведенной выше формуле:

Таким образом, наибольшее число преступников, осужденных за совершение кражи, имеет возраст 24 года.

Средняя величина дает обобщающую характеристику всей совокупности изучаемого явления. Однако две совокупности, имеющие одинаковые средние значения, могут значительно отличаться друг от друга по степени колеблемости (вариации) величины изучаемого признака. Например, в одном суде были назначены следующие сроки лишения свободы: 3, 3, 3, 4, 5, 5, 5, 12, 12, 15 лет, а в другом – 5, 5, 6, 6, 7, 7, 7, 8, 8, 8 лет. В обоих случаях средняя арифметическая равна 6,7 лет. Однако эти совокупности существенно различаются между собой разбросом индивидуальных значений назначенного срока лишения свободы относительно среднего значения.

И для первого суда, где этот разброс достаточно большой, средняя величина срока лишения свободы плохо отражает всю совокупность. Таким образом, если индивидуальные значения признака мало отличаются друг от друга, то средняя арифметическая будет достаточно показательной характеристикой свойств данной совокупности. В противном случае средняя арифметическая будет ненадежной характеристикой этой совокупности и применение ее на практике малоэффективно. Поэтому необходимо учитывать вариацию значений изучаемого признака.

Вариация – это различия в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. Термин «вариация» имеет латинское происхождение – variatio, что означает различие, изменение, колеблемость. Она возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Для измерения вариации признака применяются различные абсолютные и относительные показатели.

К основным показателям вариации относятся следующие:

1) размах вариации;

2) среднее линейное отклонение;

3) дисперсия;

4) среднее квадратическое отклонение;

5) коэффициент вариации.

Кратко остановимся на каждом из них.

Размах вариации R самый доступный по простоте расчета абсолютный показатель, который определяется как разность между самым большим и самым малым значениями признака у единиц данной совокупности:

Размах вариации (размах колебаний) – важный показатель колеблемости признака, но он дает возможность увидеть только крайние отклонения, что ограничивает область его применения. Для более точной характеристики вариации признака на основе учета его колеблемости используются другие показатели.

Среднее линейное отклонение представляет собой среднее арифметическое из абсолютных значений отклонений индивидуальных значений признака от средней и определяется по формулам:

1) для несгруппированных данных

2) для вариационного ряда

Однако наиболее широко применяемым показателем вариации является дисперсия . Она характеризует меру разброса значений изучаемого признака относительно его среднего значения. Дисперсия определяется как средняя из отклонений, возведенных в квадрат.

Простая дисперсия для не сгруппированных данных:

.

Взвешенная дисперсия для вариационного ряда:

Замечание. На практике для вычисления дисперсии лучше использовать следующие формулы:

Для простой дисперсии

.

Для взвешенной дисперсии

Среднее квадратическое отклонение - это корень квадратный из дисперсии:

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем, однороднее совокупность и тем лучше средняя арифметическая отражает собой всю совокупность.

Рассмотренные выше меры рессеяния (размах вариации, дисперсия, среднее квадратическое отклонение) являются абсолютными показателями, судить по которым о степени колеблемости признака не всегда возможно. В некоторых задачах необходимо использовать относительные показатели рассеяния, одним из которых является коэффициент вариации.

Коэффициент вариации – выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:

Коэффициент вариации используют не только для сравнительной оценки вариации разных признаков или одного и того же признака в различных совокупностях, но и для характеристики однородности совокупности. Статистическая совокупность считается количественно однородной, если коэффициент вариации не превышает 33 % (для распределений, близких к нормальному распределению).

Пример. Имеются следующие данныео сроках лишения свободы 50 осужденных, доставленных для отбывания назначенного судом наказания в исправительное учреждение уголовно-исполнительной системы: 5, 4, 2, 1, 6, 3, 4, 3, 2, 2, 5, 6, 4, 3, 10, 5, 4, 1, 2, 3, 3, 4, 1, 6, 5, 3, 4, 3, 5, 12, 4, 3, 2, 4, 6, 4, 4, 3, 1, 5, 4, 3, 12, 6, 7, 3, 4, 5, 5, 3.

1. Построить ряд распределения по срокам лишения свободы.

2. Найти среднее значение, дисперсию и среднее квадратическое отклонение.

3. Вычислить коэффициент вариации и сделать заключение об однородности или неоднородности изучаемой совокупности.

Решение. Для построения дискретного ряда распределения необходимо определить варианты и частоты. Варианта в данной задаче – это срок лишения свободы, а частоты – численность отдельных вариант. Рассчитав частоты, получим следующий дискретный ряд распределения:

Найдем среднее значение и дисперсию. Поскольку статистические данные представлены дискретным вариационным рядом, то для их вычисления будем использовать формулы среднего арифметического взвешенного и дисперсии. Получим:

= = 4,1;

= 5,21.

Теперь вычисляем среднее квадратическое отклонение:

Находим коэффициент вариации:

Следовательно, статистическая совокупность количественно неоднородна.

Средняя арифметическая простая

Средние величины

Большое распространение в статистике имеют средние величины.

Средняя величина - это обобщающий показатель, в котором находят выражение действия общих условий, закономерностей развития изучаемого явления.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в акционерных обществах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка отдельного продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д. Средняя выработка отражает общую характеристику всей совокупности.

Средняя величина измеряется в тех же единицах, что и сам признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные виды средних:

    средняя арифметическая;

    средняя гармоническая;

    средняя геометрическая;

    средняя квадратическая;

    средняя кубическая.

Средние всех перечисленных выше видов, в свою очередь, делятся на простые (невзвешенные) и взвешенные.

Рассмотрим виды средних, которые используются в статистике.

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х i (
); число единиц совокупности обозначают через n, среднее значение признака – через . Следовательно, средняя арифметическая простая равна:

или

Пример 1. Таблица 1

Данные о производстве рабочими продукции А за смену

В данном примере варьирующий признак - выпуск изделий за смену.

Численные значения признака (16, 17 и т. д.) называют вариантами. Определим среднюю выработку продукции рабочими данной группы:

шт.

Простая средняя арифметическая применяется в случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя исчисляется иначе.

Средняя арифметическая взвешенная

Средняя арифметическая взвешенная равна сумме произведений каждого отдельного значения признака (варианта) на соответствующую частоту, деленной на сумму всех частот.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается через f i .

В соответствии с этим, средняя арифметическая взвешенная выглядит так:

или

Из формулы видно, что средняя зависит не только от значений признака, но и от их частот, т.е. от состава совокупности, от ее структуры.

Пример 2. Таблица 2

Данные о заработной плате рабочих

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х 1 встречается в совокупности 2 раза, а варианта х 2 - 6 раз и т.д.

Вычислим среднюю заработную плату одного рабочего:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту (
), а сумма этих произведений дает общий фонд заработной платы всех рабочих (
).

Если бы расчет был выполнен по формуле простой средней арифметической, средний заработок был бы равен 3 000 руб. (). Сравнивая полученный результат с исходными данными, очевидно, что средняя заработная плата должна быть существенно выше (больше половины рабочих получают заработную плату выше 3 000 руб.). Поэтому расчет по простой средней арифметической в таких случаях будет ошибочным.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

Рассмотрим расчет средней арифметической для таких рядов.

Среднее значение это:

Среднее значение

Сре́днее значе́ние - числовая характеристика множества чисел или функций; - некоторое число, заключённое между наименьшим и наибольшим из их значений.

  • 1 Основные сведения
  • 2 Иерархия средних значений в математике
  • 3 В теории вероятностей и статистике
  • 4 См. также
  • 5 Примечания

Основные сведения

Исходным пунктом становления теории средних величин явилось исследование пропорций школой Пифагора. При этом не проводилось строгого различия между понятиями средней величины и пропорции. Значительный толчок развитию теории пропорций с арифметической точки зрения был дан греческими математиками - Никомахом Герасским (конец I - начало II в. н. э.) и Паппом Александрийским (III в. н. э.). Первым этапом развития понятия средней является этап, когда средняя стала считаться центральным членом непрерывной пропорции. Но понятие средней как центрального значения прогрессии не дает возможности вывести понятие средней по отношению к последовательности n членов, независимо от того, в каком порядке они следуют друг за другом. Для этой цели необходимо прибегнуть к формальному обобщению средних. Следующий этап - переход от непрерывных пропорций к прогрессиям - арифметической, геометрической и гармонической.

В истории статистики впервые широкое употребление средних величин связано с именем английского ученого У. Петти. У. Петти один из первых пытался придать средней величине статистический смысл, связав её с экономическими категориями. Но описания понятия средней величины, его выделения Петти не произвел. Родоначальником теории средних величин принято считать А. Кетле. Он одним из первых начал последовательно разрабатывать теорию средних величин, пытаясь подвести под неё математическую базу. А. Кетле выделял два вида средних величин - собственно средние и средние арифметические. Собственно средние представляют вещь, число, действительно существующие. Собственно средние или средние статистические должны выводиться из явлений однокачественных, одинаковых по своему внутреннему значению. Средние арифметические - числа, дающие возможно близкое представление о многих числах, различных, хотя и однородных.

Каждый из видов средней может выступать либо в форме простой, либо в форме взвешенной средней. Правильность выбора формы средней вытекает из материальной природы объекта исследования. Формулы простых средних применяются в случае, если индивидуальные значения усредняемого признака не повторяются. Когда в практических исследованиях отдельные значения изучаемого признака встречаются несколько раз у единиц исследуемой совокупности, тогда частота повторений индивидуальных значений признака присутствует в расчетных формулах степенных средних. В этом случае они называются формулами взвешенных средних.

Wikimedia Foundation. 2010.

Важнейшее свойство средней заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности варьируют под влиянием множества факторов, среди которых могут быть, как основные, так и случайные. Сущность средней в том и заключается, что в ней взаимокомпенсируются отклонения значений признака, которые обусловлены действием случайных факторов, и накапливаются (учитываются) изменения, вызванные действием основных факторов. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Основные принципы применения средних величин.

1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.

2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.

3. Средняя должна рассчитываться для совокупности в стационарных условиях (когда влияющие факторы не меняются или меняются не значительно).

4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

Расчет большинства конкретных статистических показателей основан на использовании:

· средней агрегатной;

· средней степенной (гармонической, геометрической, арифметической, квадратической, кубической);

· средней хронологической (см. раздел).

Все средние, за исключением средней агрегатной, могут рассчитываться в двух вариантах - как взвешенные или невзвешенные.

Средняя агрегатная. Используется формула:

где w i = x i * f i ;

x i - i-й вариант осредняемого признака;

f i , — вес i — го варианта.

Средняя степенная. В общем виде формула для расчета:

где степень k – вид средней степенной.

Значения средних рассчитанных на основании средних степенных для одних и тех же исходных данных — не одинаковы. С увеличением показателя степени k, увеличивается и соответствующая средняя величина:

Cредняя хронологическая. Для моментного динамического ряда с равными интервалами между датами, рассчитывается по формуле:

,

где х 1 и х n значение показателя на начальную и конечную дату.

Формулы расчета степенных средних

Пример. По данным табл. 2.1 требуется рассчитать среднюю заработную плату в целом по трем предприятиям.

Таблица 2.1

Заработная плата предприятий АО

Пред приятие

Численность промышленно- производственного персонала (ППП), чел.

Месячный фонд заработной платы, руб.

Средняя заработная плата, руб.

564840

2092

332750

2750

517540

2260

Итого

1415130

Конкретная расчетная формула зависит от того, какие данные табл. 7 являются исходными. Соответственно возможны варианты: данные столбцов 1 (численность ППП) и 2 (месячный ФОТ); либо — 1 (численность ППП) и 3 (средняя ЗП); или 2 (месячный ФОТ) и 3 (средняя ЗП).

Если имеются только данные столбцов 1 и 2 . Итоги этих граф содержат необходимые величины для расчета искомой средней. Используется формула средней агрегатной:

Если имеются только данные столбцов 1 и 3 , то известен знаменатель исходного соотношения, но не известен его числитель. Однако фонд заработной платы можно получить умножением средней заработной платы на численность ППП. Поэтому общая средняя может быть рассчитана по формуле средней арифметической взвешенной :

Необходимо учитывать, что вес (f i ) в отдельных случаях может представлять собой произведение двух или даже трех значений.

Кроме того, в статистической практике находит применение и средняя арифметическая невзвешенная :

где n - объем совокупности.

Эта средняя используется тогда, когда веса (f i ) отсутствую (каждый вариант признака встречается только один раз) или равны между собой.

Если имеются только данные столбцов 2 и 3. , т. е. известен числитель исходного соотношения, но не известен его знаменатель. Численность ППП каждого предприятия можно получить делением ФОТ на среднюю ЗП. Тогда расчет средней ЗП в целом по трем предприятиям проводится по формуле средней гармонической взвешенной :

При равенстве весов (f i ) расчет среднего показателя может быть произведен по средней гармонической невзвешенной:

В нашем примере использовались разные формы средних, но получили один и тот же ответ. Это обусловлено тем, что для конкретных данных каждый раз реализовывалось одно и то же исходное соотношение средней.

Средние показатели могут рассчитываться по дискретным и интервальным вариационным рядам. При этом расчет производится по средней арифметической взвешенной. Для дискретного ряда данная формула используется так же, как и в приведенном выше примере. В интервальном же ряду для расчета определяются середины интервалов.

Пример. По данным табл. 2.2 определим величину среднедушевого денежного дохода за месяц в условном регионе.

Таблица 2.2

Исходные данные (вариационный ряд)

Среднедушевой денежный доход в среднем за месяц, х, руб. Численность населения, % к итогу/
До 400 30,2
400 — 600 24,4
600 — 800 16,7
800 — 1000 10,5
1000-1200 6,5
1200 — 1600 6,7
1600 — 2000 2,7
2000 и выше 2,3
Итого 100

В математике и статистике среднее арифметическое (либо легко среднее ) комплекта чисел - это сумма всех чисел в этом комплекте, поделённая на их число. Среднее арифметическое является особенно всеобщим и самым распространённым представлением средней величины.

Вам понадобится

  • Знания по математике.

Инструкция

1. Пускай дан комплект из четырех чисел. Нужно обнаружить среднее значение этого комплекта. Для этого вначале обнаружим сумму всех этих чисел. Возможен эти числа 1, 3, 8, 7. Их сумма равна S = 1 + 3 + 8 + 7 = 19. Комплект чисел должен состоять из чисел одного знака, в отвратном случае толк в вычислении среднего значения теряется.

2. Среднее значение комплекта чисел равно сумме чисел S, деленной на число этих чисел. То есть получается, что среднее значение равно: 19/4 = 4.75.

3. Для комплекта числе также дозволено обнаружить не только среднее арифметическое, но и среднее геометрическое. Средним геометрическим нескольких правильных вещественных чисел именуется такое число, которым дозволено заменить всякое из этих чисел так, дабы их произведение не изменилось. Среднее геометрическое G ищется по формуле: корень N-ой степени из произведения комплекта чисел, где N – число числе в комплекте. Разглядим тот же комплект чисел: 1, 3, 8, 7. Обнаружим их среднее геометрическое. Для этого посчитаем произведение: 1*3*8*7 = 168. Сейчас из числа 168 нужно извлечь корень 4-ой степени: G = (168)^1/4 = 3.61. Таким образом среднее геометрическое комплекта чисел равно 3.61.

Среднее геометрическое в совокупности применяется реже, чем арифметическое среднее, впрочем оно может быть пригодно при вычислении среднего значения показателей, изменяющихся с течением времени (заработная плата отдельного работника, динамика показателей успеваемости и т.п.).

Вам понадобится

  • Инженерный калькулятор

Инструкция

1. Для того дабы обнаружить среднее геометрическое ряда чисел, для начала надобно перемножить все эти числа. Скажем, вам дан комплект из пяти показателей: 12, 3, 6, 9 и 4. Перемножим все эти числа: 12х3х6х9х4=7776.

2. Сейчас из полученного числа надобно извлечь корень степени, равной числу элементов ряда. В нашем случае из числа 7776 необходимо будет извлечь корень пятой степени при помощи инженерного калькулятора. Полученное позже этой операции число – в данном случае число 6 – будет являться средним геометрическим для начальной группы чисел.

3. Если у вас под рукой нет инженерного калькулятора, то вычислить среднее геометрическое ряда чисел дозволено с поддержкой функции СРГЕОМ в программе Excel либо при помощи одного из онлайн-калькуляторов, намеренно предуготовленных для вычисления средних геометрических значений.

Обратите внимание!
Если понадобится обнаружить среднее геометрическое каждого для 2-х чисел, то инженерный калькулятор вам не потребуется: извлечь корень 2-й степени (квадратный корень) из всякого числа дозволено при помощи самого обыкновенного калькулятора.

Полезный совет
В различие от среднего арифметического, на геометрическое среднее не так мощно влияют огромные отклонения и колебания между отдельными значениями в исследуемом комплекте показателей.

Среднее значение – это одна из колляций комплекта чисел. Представляет собой число, которое не может выходить за пределы диапазона, определяемого наибольшим и наименьшим значениями в этом комплекте чисел. Среднее арифметическое значение – особенно зачастую применяемая разновидность средних.

Инструкция

1. Сложите все числа множества и поделите их на число слагаемых, дабы получить среднее арифметическое значение. В зависимости от определенных условий вычисления изредка бывает проще разделять всякое из чисел на число значений множества и суммировать итог.

2. Используйте, скажем, входящий в состава ОС Windows калькулятор, если вычислить среднее арифметическое значение в уме не представляется допустимым. Открыть его дозволено с поддержкой диалога запуска программ. Для этого нажмите «жгучие клавиши» WIN + R либо щелкните кнопку «Пуск» и выберите в основном меню команду «Исполнить». После этого напечатайте в поле ввода calc и нажмите на клавиатуре Enter либо щелкните кнопку «OK». Это же дозволено сделать через основное меню – раскройте его, перейдите в раздел «Все программы» и в сегменты «Типовые» и выберите строку «Калькулятор».

3. Введите ступенчато все числа множества, нажимая на клавиатуре позже всего из них (помимо последнего) клавишу «Плюс» либо щелкая соответствующую кнопку в интерфейсе калькулятора. Вводить числа тоже дозволено как с клавиатуры, так и щелкая соответствующие кнопки интерфейса.

4. Нажмите клавишу с косой чертой (слэш) либо щелкните данный значок в интерфейсе калькулятора позже ввода последнего значения множества и напечатайте число чисел в последовательности. После этого нажмите знак равенства, и калькулятор рассчитает и покажет среднее арифметическое значение.

5. Дозволено для этой же цели применять табличный редактор Microsoft Excel. В этом случае запустите редактор и введите в соседние ячейки все значения последовательности чисел. Если позже ввода всего числа вы будете нажимать Enter либо клавишу со стрелкой вниз либо вправо, то редактор сам будет перемещать фокус ввода в соседнюю ячейку.

6. Выделите все введенные значения и в левом нижнем углу окна редактора (в строке состояния) увидите среднеарифметическое значение для выделенных ячеек.

7. Щелкните следующую за последним введенным числом ячейку, если вам не довольно только увидеть среднее арифметическое значение. Раскройте выпадающий список с изображением греческой буквы сигма (Σ) в группе команд «Редактирование» на вкладке «Основная». Выберите в нем строку «Среднее » и редактор вставит необходимую формулу для вычисления среднеарифметического значения в выделенную ячейку. Нажмите клавишу Enter, и значение будет рассчитано.

Среднее арифметическое – одна из мер центральной склонности, обширно применяемая в математике и статистических расчетах. Обнаружить среднее арифметическое число для нескольких значений дюже легко, но у всякой задачи есть свои нюансы, знать которые для выполнения правильных расчетов примитивно нужно.

Что такое среднее арифметическое число

Среднее арифметическое число определяет усредненное значение для каждого начального массива чисел. Другими словами, из некоторого множества чисел выбирается всеобщее для всех элементов значение, математическое сопоставление которого со всеми элементами носит приближенно равный нрав. Среднее арифметическое число применяется, предпочтительно, при составлении финансовых и статистических отчетов либо для расчетов количественных итогов проведенных сходственных навыков.

Как обнаружить среднее арифметическое число

Поиск среднего арифметического числа для массива чисел следует начинать с определения алгебраической суммы этих значений. К примеру, если в массиве присутствуют числа 23, 43, 10, 74 и 34, то их алгебраическая сумма будет равна 184. При записи среднее арифметическое обозначается буквой? (мю) либо x (икс с чертой). Дальше алгебраическую сумму следует поделить на число чисел в массиве. В рассматриваемом примере чисел было пять, следственно среднее арифметическое будет равно 184/5 и составит 36,8.

Особенности работы с негативными числами

Если в массиве присутствуют негативные числа, то нахождение среднего арифметического значения происходит по аналогичному алгорифму. Разница имеется только при рассчетах в среде программирования, либо же если в задаче есть добавочные данные. В этих случаях нахождение среднего арифметического чисел с различными знаками сводится к трем действиям:1. Нахождение всеобщего среднего арифметического числа стандартным способом;2. Нахождение среднего арифметического негативным чисел.3. Вычисление среднего арифметического позитивных чисел.Результаты всякого из действий записываются через запятую.

Натуральные и десятичные дроби

Если массив чисел представлен десятичными дробями, решение происходит по способу вычисления среднего арифметического целых чисел, но сокращение итога производится по требованиям задачи к точности результата.При работе с естественными дробями их следует привести к всеобщему знаменателю, тот, что умножается на число чисел в массиве. В числителе результата будет сумма приведенных числителей начальных дробных элементов.

Среднее геометрическое чисел зависит не только от безусловной величины самих чисел, но и от их числа. Невозможно путать среднее геометрическое и среднее арифметическое чисел, от того что они находятся по различным методологиям. При этом среднее геометрическое неизменно поменьше либо равно среднему арифметическому.

Вам понадобится

  • Инженерный калькулятор.

Инструкция

1. Рассматривайте, что в всеобщем случае среднее геометрическое чисел находится путем перемножения этих чисел и извлечения из них корня степени, которая соответствует числу чисел. Скажем, если надобно обнаружить среднее геометрическое пяти чисел, то из произведения необходимо будет извлекать корень пятой степени.

2. Для нахождения среднего геометрического 2-х чисел используйте основное правило. Обнаружьте их произведение, позже чего извлеките из него квадратный корень, от того что числа два, что соответствует степени корня. Скажем, для того дабы обнаружить среднее геометрическое чисел 16 и 4, обнаружьте их произведение 16 4=64. Из получившегося числа извлеките квадратный корень?64=8. Это и будет желанная величина. Обратите внимание на то, что среднее арифметическое этих 2-х чисел огромнее и равно 10. Если корень не извлекается нацело, произведите округление итога до надобного порядка.

3. Дабы обнаружить среднее геометрическое больше чем 2-х чисел, тоже используйте основное правило. Для этого обнаружьте произведение всех чисел, для которых надобно обнаружить среднее геометрическое. Из полученного произведения извлеките корень степени, равной числу чисел. Скажем, дабы обнаружить среднее геометрическое чисел 2, 4 и 64, обнаружьте их произведение. 2 4 64=512. От того что необходимо обнаружить итог среднего геометрического 3 чисел, что из произведения извлеките корень третей степени. Сделать это устно затруднительно, следственно воспользуйтесь инженерным калькулятором. Для этого в нем есть кнопка “x^y”. Наберите число 512, нажмите кнопку “x^y”, позже чего наберите число 3 и нажмите кнопку “1/х”, дабы обнаружить значение 1/3, нажмите кнопку “=”. Получим итог возведения 512 в степень 1/3, что соответствует корню третьей степени. Получите 512^1/3=8. Это и есть среднее геометрическое чисел 2,4 и 64.

4. С поддержкой инженерного калькулятора дозволено обнаружить среднее геометрическое иным методом. Обнаружьте на клавиатуре кнопку log. Позже этого возьмите логарифм для всего из чисел, обнаружьте их сумму и поделите ее на число чисел. Из полученного числа возьмите антилогарифм. Это и будет среднее геометрическое чисел. Скажем, для того дабы обнаружить среднее геометрическое тех же чисел 2, 4 и 64, сделайте на калькуляторе комплект операций. Наберите число 2, позже чего нажмите кнопку log, нажмите кнопку “+”, наберите число 4 и вновь нажмите log и “+”, наберите 64, нажмите log и “=”. Итогом будет число, равное сумме десятичных логарифмов чисел 2, 4 и 64. Полученное число поделите на 3, от того что это число чисел, по которым ищется среднее геометрическое. Из итога возьмите антилогарифм, переключив кнопку регистра, и используйте ту же клавишу log. В итоге получится число 8, это и есть желанное среднее геометрическое.

Обратите внимание!
Среднее значение не может быть огромнее самого большого числа в комплекте и поменьше самого маленького.

Полезный совет
В математической статистике среднее значение величины именуется математическим ожиданием.



gastroguru © 2017