Дистальные потоки в метрических пространствах. Метрические пространства

Модуль 2.

Лекция 17. Функция нескольких переменных

Раздел 17.1. n-мерное пространство

1. Многомерные пространства

2. Понятие расстояния (метрики). Метрическое пространство

3. Принципы кластерного анализа

Раздел 17.2 Функция нескольких переменных

1. Функция нескольких переменных

2. Частные производные

3. Двойной интеграл

4. Полярные координаты и интеграл Эйлера-Пуассона

Программные положения

В лекции рассматриваются вопросы, связанные с пространствами размерности больше двух: введение понятия расстояния, использования расстояния в кластерном анализе, функция нескольких (в нашем случае – двух) переменных, характеристика ее с помощью частных производных, а также вычисления площади и объема. Понятия функции двух переменных и двойного интеграла понадобятся нам при изучении случайных векторов в теории вероятностей. Завершается материал лекции вычислением интеграла Эйлера-Пуассона – одного из основных в теории вероятностей (неопределенный интеграл от функции Гаусса относится к неберущимся, а в случае наличия пределов интегрирования для вычисления подобных интегралов требуется применение неочевидных методов, один из которых и приводится здесь).

Перед изучением материала лекции повторите определение функции, производной, интеграла.

Литература

Б.П.Демидович, В.А.Кудрявцев «Краткий курс высшей математики» Глава ХХ (§1, 2.3,10), Глава XXIV (§1, 2,3,4,7)

Вопросы для самоконтроля

1. Какое пространство называется n-мерным?

2. Каким условиям должно удовлетворять расстояние?

3. Какое пространство называется метрическим?

4. Для чего используется кластерный анализ?

5. Что представляет собой график функции 2 переменных? Что такое линии уровня?

6. Что такое частная производная?

7. Дайте определение двойного интеграла. Как с его помощью вычислить площадь и объем?

8. Найдите расстояние между точками А(1,2,3) и В(5,1,0) (используя разные расстояния)

9.Найти линии уровня функций

z = x + y.

10. Найти частные производные функции

11.Найти площадь фигуры, ограниченной линиями

12. Вычислить

Раздел 17.1. Понятие многомерного пространства

Определение 17.1.1 . n-мерного пространства.

Если на плоскости R2 фиксирована прямоугольная система координат, то между точками плоскости и всевозможными парами чисел (х, у) (х и у - координаты точек) существует взаимно однозначное соответствие. Если в пространстве задана аналогичная система координат, то между точками пространства и их координатами - всевозможными тройками (x,y,z) - также существует взаимно однозначное соответствие.

Расстояние (метрика). Метрическое пространство

Определение 17.1.2

Метрическое пространство (M ,d ) есть множество точек М, на квадрате которого (то есть для любой пары точек из М) задана функция расстояния (метрика) . Она определяется следующим образом:

Для любых точек x , y , z из M эта функция должна удовлетворять следующим условиям:

Эти аксиомы отражают интуитивное понятие расстояния. Например, расстояние должно быть неотрицательно и расстояние от x до y такое же, как и от y до x . Неравенство треугольника означает, что пройти от x до z можно короче, или хотя бы не длиннее, чем сначала пройти x до y , а потом от y до z .

Наиболее привычным для нас является евклидово расстояние. Однако, это далеко не единственный способ его задания. Например, будет удовлетворять вышеупомянутым аксиомам такое расстояние: d(x,y) = 1 , если x ≠ y и d(x,y) = 0 , если x = y.

В зависимости от конкретных нужд или свойств пространства можно рассматривать различные метрики.

Рассмотрим несколько примеров расстояний:

Определения 17.1.3.

Евклидово расстояние. Это, по-видимому, наиболее общий тип расстояния. Оно попросту является геометрическим расстоянием в многомерном пространстве и вычисляется следующим образом:

d(x,y) = { i (x i - y i) 2 } 1/2

Заметим, что евклидово расстояние (и его квадрат) вычисляется по исходным, а не по стандартизованным данным. Это обычный способ его вычисления, который имеет определенные преимущества (например, расстояние между двумя объектами не изменяется при введении в анализ нового объекта, который может оказаться выбросом). Тем не менее, на расстояния могут сильно влиять различия между осями, по координатам которых вычисляются эти расстояния. К примеру, если одна из осей измерена в сантиметрах, а вы потом переведете ее в миллиметры (умножая значения на 10), то окончательное евклидово расстояние (или квадрат евклидова расстояния), вычисляемое по координатам, сильно изменится, и, как следствие, результаты кластерного анализа могут сильно отличаться от предыдущих.

Квадрат евклидова расстояния. Стандартное евклидово расстояние возводят в квадрат, чтобы придать большие веса более отдаленным друг от друга объектам. Это расстояние вычисляется следующим образом (к нему также относится замечание о влиянии единиц измерения из предыдущего пункта):

d(x,y) = i (x i - y i) 2

Расстояние городских кварталов (манхэттенское расстояние). Это расстояние является просто средним разностей по координатам. В большинстве случаев эта мера расстояния приводит к таким же результатам, как и для обычного расстояния Евклида. Однако отметим, что для этой меры влияние отдельных больших разностей (выбросов) уменьшается (так как они не возводятся в квадрат). Манхэттенское расстояние вычисляется по формуле:

d(x,y) = i |x i - y i |

Расстояние Чебышева. Это расстояние может оказаться полезным, когда желают определить два объекта как "различные", если они различаются по какой-либо одной координате (каким-либо одним измерением). Расстояние Чебышева вычисляется по формуле:

d(x,y) = max |x i - y i |

(max означает максимум – наибольшее из всех значений модулей разностей)

Степенное расстояние. Иногда желают прогрессивно увеличить или уменьшить вес, относящийся к размерности, для которой соответствующие объекты сильно отличаются. Это может быть достигнуто с использованием степенного расстояния . Степенное расстояние вычисляется по формуле:

d(x,y) = ( i |x i - y i | p) 1/r

где r и p - параметры, определяемые пользователем. Несколько примеров вычислений могут показать, как "работает" эта мера. Параметр p ответственен за постепенное взвешивание разностей по отдельным координатам, параметр r ответственен за прогрессивное взвешивание больших расстояний между объектами. Если оба параметра - r и p , равны двум, то это расстояние совпадает с расстоянием Евклида.

English: Wikipedia is making the site more secure. You are using an old web browser that will not be able to connect to Wikipedia in the future. Please update your device or contact your IT administrator.

中文: 维基百科正在使网站更加安全。您正在使用旧的浏览器,这在将来无法连接维基百科。请更新您的设备或联络您的IT管理员。以下提供更长,更具技术性的更新(仅英语)。

Español: Wikipedia está haciendo el sitio más seguro. Usted está utilizando un navegador web viejo que no será capaz de conectarse a Wikipedia en el futuro. Actualice su dispositivo o contacte a su administrador informático. Más abajo hay una actualización más larga y más técnica en inglés.

ﺎﻠﻋﺮﺒﻳﺓ: ويكيبيديا تسعى لتأمين الموقع أكثر من ذي قبل. أنت تستخدم متصفح وب قديم لن يتمكن من الاتصال بموقع ويكيبيديا في المستقبل. يرجى تحديث جهازك أو الاتصال بغداري تقنية المعلومات الخاص بك. يوجد تحديث فني أطول ومغرق في التقنية باللغة الإنجليزية تاليا.

Français: Wikipédia va bientôt augmenter la sécurité de son site. Vous utilisez actuellement un navigateur web ancien, qui ne pourra plus se connecter à Wikipédia lorsque ce sera fait. Merci de mettre à jour votre appareil ou de contacter votre administrateur informatique à cette fin. Des informations supplémentaires plus techniques et en anglais sont disponibles ci-dessous.

日本語: ウィキペディアではサイトのセキュリティを高めています。ご利用のブラウザはバージョンが古く、今後、ウィキペディアに接続できなくなる可能性があります。デバイスを更新するか、IT管理者にご相談ください。技術面の詳しい更新情報は以下に英語で提供しています。

Deutsch: Wikipedia erhöht die Sicherheit der Webseite. Du benutzt einen alten Webbrowser, der in Zukunft nicht mehr auf Wikipedia zugreifen können wird. Bitte aktualisiere dein Gerät oder sprich deinen IT-Administrator an. Ausführlichere (und technisch detailliertere) Hinweise findest Du unten in englischer Sprache.

Italiano: Wikipedia sta rendendo il sito più sicuro. Stai usando un browser web che non sarà in grado di connettersi a Wikipedia in futuro. Per favore, aggiorna il tuo dispositivo o contatta il tuo amministratore informatico. Più in basso è disponibile un aggiornamento più dettagliato e tecnico in inglese.

Magyar: Biztonságosabb lesz a Wikipédia. A böngésző, amit használsz, nem lesz képes kapcsolódni a jövőben. Használj modernebb szoftvert vagy jelezd a problémát a rendszergazdádnak. Alább olvashatod a részletesebb magyarázatot (angolul).

Svenska: Wikipedia gör sidan mer säker. Du använder en äldre webbläsare som inte kommer att kunna läsa Wikipedia i framtiden. Uppdatera din enhet eller kontakta din IT-administratör. Det finns en längre och mer teknisk förklaring på engelska längre ned.

हिन्दी: विकिपीडिया साइट को और अधिक सुरक्षित बना रहा है। आप एक पुराने वेब ब्राउज़र का उपयोग कर रहे हैं जो भविष्य में विकिपीडिया से कनेक्ट नहीं हो पाएगा। कृपया अपना डिवाइस अपडेट करें या अपने आईटी व्यवस्थापक से संपर्क करें। नीचे अंग्रेजी में एक लंबा और अधिक तकनीकी अद्यतन है।

We are removing support for insecure TLS protocol versions, specifically TLSv1.0 and TLSv1.1, which your browser software relies on to connect to our sites. This is usually caused by outdated browsers, or older Android smartphones. Or it could be interference from corporate or personal "Web Security" software, which actually downgrades connection security.

You must upgrade your web browser or otherwise fix this issue to access our sites. This message will remain until Jan 1, 2020. After that date, your browser will not be able to establish a connection to our servers.

До Римана, Лобачевского, Эйнштейна и некоторых других товарищей геометрия строилась из плоскостей, невидимых точек и бесконечных в обе стороны прямых. Над плоско-трехмерным миром гордо реяло время, воспринимаемое нами как некий процесс, квантуемый для удобства на удары сердца и тиканье часов. Все привычно, прямолинейно, понятно, действуют силы, три координаты в пространстве можно определить где угодно - просто вбей колышек.

Конец идиллии настал с приходом математиков, исследующих на кончике пера многомерные пространства. Они строили сложные, многокоординатные объекты и системы, немыслимые для человеческого глаза и ощущений, например, знаменитый четырехмерный куб, лента Мёбиуса и прочее. Постепенно выяснилось, что воображаемое пространство необязательно должно состоять из плоскостей и прямых с процессом-временем, оно может состоять, например, из свернутого в трубку неправильной формы плоского листа, причем время является длиной оси, проведенной в центре трубки. Поставленная в такое "неправильное" пространство точка уже никогда не будет иметь привычных нам трех координат, так как вбитый колышек не поможет их измерить. Положение поставленной точки в не-евклидовом пространстве нужно будет уже представлять в виде целого массива чисел, который еще и непрерывно изменяется в соответствии с некоторыми правилами. Сами правила в каждом вымышленном пространстве свои. Такой массив чисел называется тензором, он хранит данные о точках пространства примерно в том виде, в каком хранит изображение известная игрушка "картинка из гвоздей": длина каждого стержня есть вектор, указывающий на точку по одной из координат, их сочетание дает одно ее изображение, единственное и неповторимое.

Тензоры - объекты сложные, но у них есть одно общее место - тензор как массив векторов-стержней можно "срезать поперек", определив так называемую матрицу тензора - двухмерную таблицу, в которой вместо обычных чисел формулы, описывающие правила его преобразования. Матрица - простой объект, операции с которым хорошо разработаны еще столетия назад. Головы математиков начали усиленно работать, подставлялись самые разные формулы, строились тензоры для точек самых немыслимых пространств. В конце концов усилиями Минковского, Римана, Лоренца и Эйнштейна были обнаружены простейшие тензоры, описывающие с достаточной точностью воспринимаемое нами трехмерное евклидово пространство и время-процесс. Их матрицы и называются метриками.

В дальнейшем пришло понимание того, что в силу взятого за основу Эйнштейном постоянства скорости света в вакууме метрика Минковского становится неприменимой на очень больших расстояниях между точками, или при очень высоких показателях гравитационного взаимодействия. Головы математиков снова заработали, уже в альянсе с физиками, искавшими экспериментальное подтверждение теорий. Так появилась, например, метрика Шварцшильда, которая описывает наш мир через перемножение матриц тензоров двухмерной прямоугольной плоскости и двухмерной же сферы (она же всем знакомая окружность, но в виде целого пространства). Метрика Шварцшильда позволила описать, почему мы именно так, а не иначе, воспринимаем движение объектов небесной сферы. Время в ней - постоянная величина(!), вводимая отдельно в каждый расчет, а расстояние от точки до наблюдателя - на самом деле некий вектор, дающий описание протяженности пространства(-времени) между двумя не объектами, но событиями.

1. Пространство изолированных точек.

Произвольное множество и

2. Множество действительных чисел с расстоянием образует метрическое пространство .

3. Множество упорядоченных групп из действительных чисел с называется – мерным арифметическим евклидовым пространством .

Доказательство.

Для того, чтобы доказать, что пространство является метрическим, необходимо проверить выполнимость аксиом.

Пусть , , .

, , …, , т. е. .

А3. Проверим, выполняется ли в аксиома треугольника. Запишем аксиому в виде:

Полагая , , получим и .

Для доказательства этого неравенства используется неравенство Коши–Буняковского .

Действительно,

Следовательно, аксиома треугольника выполнена, и рассматриваемое множество с заданной метрикой является метрическим пространством.

Что и требовалось доказать.

4. Множество упорядоченных групп из действительных чисел с . Это метрическое пространство обозначается .

5. Множество упорядоченных групп из действительных чисел с . Это метрическое пространство обозначается .

Примеры 3, 4 и 5 показывают, что один и тот же запас точек может быть по-разному метризован.

6. Множество всех непрерывных действительных функций, определенных на сегменте с расстоянием . Обозначают это метрическое пространство как и само множество точек пространства: . В частности, вместо пишут .

7. Через обозначается метрическое пространство, точками которого служат всевозможные последовательности действительных чисел, удовлетворяющие условию , и метрика определяется формулой .

Доказательство.

Так как , то имеет смысл при всех . Т.е. ряд сходится, если и .

Покажем, что удовлетворяет аксиомам.

Аксиомы 1, 2 очевидны. Аксиома треугольника примет вид:

Все ряды являются сходящимися.

Неравенство справедливо для любого (см. пример 3). При получаем неравенство для .

Что и требовалось доказать.

8. Рассмотрим совокупность всех функций, непрерывных на отрезке и . Такое метрическое пространство обозначается и называется пространством непрерывных функций с квадратичной метрикой.

9. Рассмотрим множество всех ограниченных последовательностей действительных чисел. Определим . Это метрическое пространство обозначается .

10. Множество упорядоченных групп из действительных чисел с расстоянием , где – любое фиксированное число , представляет собой метрическое пространство, обозначаемое .

Рассмотренная в этом примере метрика превращается в евклидову метрику при (см. пример 3) и в метрику примера 4 при . Можно показать, что метрика (см. пример 5) является предельным случаем .

11. Рассмотрим всевозможные последовательности действительных чисел, удовлетворяющие условию , где – некоторое фиксированное число, а расстояние определяется формулой . Имеем метрическое пространство .

12. Пусть – множество всех бесконечных последовательностей –комплексных чисел . Определим . Имеем метрическое пространство.

Определение: Пусть – метрическое пространство и – любое подмножество . Тогда с той же функцией , которая теперь определена для , представляет собой метрическое пространство, которое называется подпространством пространства .

Основные понятия

Обозначим метрическое пространство через .

Определение: Последовательность , принадлежащая метрическому пространству, называется фундаментальной , если каждому соответствует номер такой, что для любых справедливо неравенство .

Определение: Последовательность , принадлежащая метрическому пространству , называется сходящейся , если существует такой, что каждому соответствует номер такой, что для всех справедливо неравенство . Тогда называется пределом последовательности.

Теорема: Если последовательность имеет предел, то он единственный.

Доказательство.

Действительно, если и , то . Так как и , то , т.е. .

Теорема доказана.

Определение: Полным метрическим пространством называется метрическое пространство, в котором каждая фундаментальная последовательность сходится.

Теорема: Метрика как функция двух аргументов является непрерывной функцией, т.е. если и , то .

Доказательство:

Пусть , , , .

По неравенству треугольника:

Из (1) получаем:

Из (2) получаем:

Так как ,

Обозначим .

В метрическом пространстве можно рассматривать различные множества, окрестности точек, предельные точки и другие понятия классического анализа.

Определение: Под окрестностью точки понимают множество, содержащие открытый шар радиуса с центром в точке , т.е.

Определение: Точка называется предельной точкой для множества , если в любой окрестности точки содержится хотя бы одна точка из , отличная от .

Определение: Точка называется внутренней точкой множества , если она входит в вместе с некоторой своей окрестностью .

Определение: Множество называется открытым , если оно состоит из одних внутренних точек. Множество называется замкнутым в себе, если оно содержит все свои предельные точки.

Метрическое пространство является замкнутым.

Подпространства могут быть и не замкнутыми подмножествами .

Если к присоединить все его предельные точки, то получаем замыкание .

Определение: Множество , лежащее в метрическом пространстве называется замкнутым , если оно совпадает со своим замыканием: .

Замкнутое множество, есть наименьшее замкнутое множество, содержащие .

Определение: Пусть . Множество называется плотным в , если . Множество называется всюду плотным , если . Множество называется нигде не плотным в , если каков бы ни был шар , найдется другой шар , свободный от точек множества .

Определение: Пространство называется сепарабельным, если в нем существует всюду плотное счетное множество.

В математическом анализе важную роль играет свойство полноты числовой прямой, то есть тот факт, что всякая фундаментальная последовательность действительных чисел сходится к некоторому пределу (Критерий сходимости Коши).

Числовая прямая служит примером полным метрических пространств.

Пространства изолированных точек, , , , , , являются полными метрическими пространствами .

Пространство не полно .

В анализе широко используется так называемая лемма о вложенных отрезках :

Пусть - система вложенных отрезков. Тогда для отрезка имеем .

Это значит, что все отрезки из множества имеют общую точку .

В теории метрических пространств аналогичную роль играет теорема о вложенных шарах.

Теорема: Для того, чтобы метрическое пространство было полным необходимо и достаточно, чтобы в нем всякая последовательность вложенных друг в друга шаров, радиусы которых , имела непустое пересечение.

Доказательство:

Необходимость:

Пусть - полное метрическое пространство и пусть - последовательность вложенных друг в друга замкнутых шаров.

Пусть - радиус, а - центр шара .

Последовательность центров - фундаментальна, так как при , а при . Так как - полно, то . Положим , тогда . Действительно, шар содержит все точки последовательности , за исключением, быть может точек . Таким образом точка является точкой прикосновения (предельной точкой) для каждого шара . Но так как - замкнутое множество, то .

Достаточность:

Пусть - фундаментальная последовательность. Докажем, что она имеет предел. В силу фундаментальности можем выбрать такую точку последовательности, что при всех . Примем точку за центр замкнутого шара радиуса .Обозначим этот шар . , вложенных друг в друга, причем шар - некоторый замкнутый шар радиуса содержит некоторую точку пополнением

Одной из важнейших операций анализа является предельный переход. В основе этой операции лежит тот факт, что на числовой прямой определено расстояние от одной точки до другой. Многие фундаментальные факты анализа не связаны с алгебраической природой действи­тельных чисел (т. е. с тем, что они образуют поле), а опираются лишь на понятие расстояния. Обобщая представление о действи­тельных числах как о множестве, в котором введено расстояние между элементами, мы приходим к понятию метрического пространства - одному из важнейших понятий современной математики.

Метрическим пространством называется пара (Х, r), состоящая из некоторого множества (пространства) Х элементов (точек) и расстояния, т. е. неотрица­тельной действительной функции r(х,у), определенной для лю­бых х и у из Х и подчиненной следующим трем аксиомам:

1) r(х, у) = 0 тогда и только тогда, когда х = у,

2) r(х, у) = r(у, х) (аксиома симметрии),

3) r(х, г) r(х, у) + r (у, г) (аксиома треугольника).

Само метрическое пространство, т. е. пару (Х, ρ), мы будем обозначать, как правило, одной буквой:

R = (X, ρ).

В случаях, когда недоразумения исключены, мы будем за­частую обозначать метрическое пространство тем же символом, что и сам «запас точек» X.

Приведем примеры метрических пространств. Некоторыеизэтих пространств играют в анализе весьма важную роль.

1. Положив для элементов произвольного множества

мы получим, очевидно, метрическое пространство. Его можно на­звать пространством изолированных точек.

2. Множество действительных чисел с расстоянием

ρ(х, у) = | х - у |

образует метрическое пространствоR 1 .

3. Множество упорядоченных наборов из п действительных чи­сел с расстоянием

называется п -мерным арифметическим евклидовым пространством R n .

4. Рассмотрим то же самое множество наборов из п действительных чи­сел , но расстояние опре­делим в нем формулой

Справедливость аксиом 1)-3) здесь очевидна. Обозначим это метрическое пространство символом R n 1 .

5. Возьмем снова то же самое множество, что и в приме­рах 3 и 4, и определим расстояние между его элементами фор­мулой

Справедливость аксиом 1)-3) очевидна. Это пространство, ко­торое мы обозначим R n ¥ во многих вопросах анализа не менее удобно, чем евклидово пространство R n .

Последние три примера показывают, что иногда и в самом деле важно иметь различные обозначения для самого метриче­ского пространства и для множества его точек, так как один и тот же запас точек может быть по-разному метризован.

6. Множество С всех непрерывных действительных функ­ций, определенных на отрезке с расстоянием


также образует метрическое пространство. Аксиомы1)-3) про­веряются непосредственно. Это пространство играет очень важ­ную роль в анализе. Мы будем его обозначать тем же симво­лом С , что и само множество точек этого пространства.

7. Рассмотрим, как и в примере 6, совокупность всех функ­ций, непрерывных на отрезке С , но расстояние определим иначе, а именно, положим

Такое метрическое пространство мы будем обозначать С 2 и называть пространством непрерывных функций с квад­ратичной метрикой.



gastroguru © 2017