Знаки тригонометрических функций. Тригонометрический круг

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Если вы уже знакомы с тригонометрическим кругом , и хотите лишь освежить в памяти отдельные элементы, или вы совсем нетерпеливы, – то вот он, :

Мы же здесь будем все подробно разбирать шаг за шагом.

Тригонометрический круг – не роскошь, а необходимость

Тригонометрия у многих ассоциируется с непроходимой чащей. Вдруг наваливается столько значений тригонометрических функций, столько формул… А оно ведь, как, – незаладилось вначале, и… пошло-поехало… сплошное непонимание…

Очень важно не махать рукой на значения тригонометрических функций , – мол, всегда можно посмотреть в шпору с таблицей значений.

Если вы постоянно смотрите в таблицу со значениями тригонометрических формул, давайте избавляться от этой привычки!

Нас выручит ! Вы несколько раз поработаете с ним, и далее он у вас сам будет всплывать в голове. Чем он лучше таблицы? Да в таблице-то вы найдете ограниченное число значений, а на круге – ВСЕ!

К примеру, скажите, глядя в стандартную таблицу значений тригонометрических формул , чему равен синус, скажем, 300 градусов, или -45.


Никак?.. можно, конечно, подключить формулы приведения … А глядя на тригонометрический круг, легко можно ответить на такие вопросы. И вы скоро будете знать как!

А при решении тригонометрических уравнений и неравенств без тригонометрического круга – вообще никуда.

Знакомство с тригонометрическим кругом

Давайте по порядку.

Сначала выпишем вот такой ряд чисел:

А теперь такой:

И, наконец, такой:

Конечно, понятно, что, на самом-то деле, на первом месте стоит , на втором месте стоит , а на последнем – . То есть нас будет больше интересовать цепочка .

Но как красиво она получилась! В случае чего – восстановим эту «лесенку-чудесенку».

И зачем оно нам?

Эта цепочка – и есть основные значения синуса и косинуса в первой четверти.

Начертим в прямоугольной системе координат круг единичного радиуса (то есть радиус-то по длине берем любой, а его длину объявляем единичной).

От луча «0-Старт» откладываем в направлении стрелки (см. рис.) углы .

Получаем соответствующие точки на круге. Так вот если спроецировать точки на каждую из осей, то мы выйдем как раз на значения из указанной выше цепочки.

Это почему же, спросите вы?

Не будем разбирать все. Рассмотрим принцип , который позволит справиться и с другими, аналогичными ситуациями.

Треугольник АОВ – прямоугольный, в нем . А мы знаем, что против угла в лежит катет вдвое меньший гипотенузы (гипотенуза у нас = радиусу круга, то есть 1).

Значит, АВ= (а следовательно, и ОМ=). А по теореме Пифагора

Надеюсь, уже что-то становится понятно?

Так вот точка В и будет соответствовать значению , а точка М – значению

Аналогично с остальными значениями первой четверти.

Как вы понимаете, привычная нам ось (ox) будет осью косинусов , а ось (oy) – осью синусов . позже.

Слева от нуля по оси косинусов (ниже нуля по оси синусов) будут, конечно, отрицательные значения.

Итак, вот он, ВСЕМОГУЩИЙ , без которого никуда в тригонометрии.

А вот как пользоваться тригонометрическим кругом, мы поговорим в .

Что такое единичная окружность . Единичная окружность -- это окружность с радиусом, равным 1, и с центром в начале координат. Вспомните, что уравнение окружности выглядит как x 2 +y 2 =1. Такая окружность может быть использована для нахождения некоторых "особых" тригонометрических соотношений, а также при построении графических изображений. С помощью нее и заключенной в ней линии можно оценивать и численные значения тригонометрических функций.

Запомните 6 тригонометрических соотношений. Помните, что

  • sinθ=противолежащий катет/гипотенуза
  • cosθ=прилежащий катет/гипотенуза
  • tgθ=противолежащий катет/прилежащий катет
  • cosecθ=1/sin
  • secθ=1/cos
  • ctgθ=1/tg.
  • Что такое радиан . Радиан -- одна из мер для определения величины угла. Один радиан -- это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса. Заметьте, что при этом величина и расположение окружности не играют никакой роли. Следует также знать, чему равно число радиан для полной окружности (360 градусов). Вспомните, что длина окружности равна 2πr, что превышает длину радиуса в 2π раза. Поскольку по определению 1 радиан -- это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

    Умейте перевести радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

    • 2π радиан=360 градусов
    • 1 радиан=(360/2π) градусов
    • 1 радиан=(180/π) градусов
    • 360 градусов=2π радиан
    • 1 градус=(2π/360) радиан
    • 1 градус=(π/180) радиан
  • Выучите "особые" углы. Эти углы в радианах составляют π/6, π/3, π/4, π/2, π и произведения данных величин (например, 5π/6)

    Изучите и запомните значения тригонометрических функций для особых углов. Для определения их величин вы должны взглянуть на единичную окружность. Вспомните об отрезке известной длины, заключенном в единичной окружности. Точка на окружности соответствует количеству радиан в образованном угле. Например, углу π/2 соответствует точка на окружности, радиус к которой образует с положительным горизонтальным радиусом угол величиной π/2. Для нахождения значения тригонометрической функции какого-либо угла определяются координаты точки, соответствующей этому углу. Гипотенуза всегда равна единице, поскольку она является радиусом круга, и так как любое число, поделенное на 1, равно самому себе, а противоположный катет равен длине вдоль оси Оy, отсюда следует, что значение синуса какого-либо угла -- это координата y соответствующей точки на окружности. Значение косинуса можно найти схожим образом. Косинус равен длине прилежащего катета, деленной на длину гипотенузы; поскольку последняя равна единице, а длина прилежащего катета равна координате x точки на окружности, отсюда следует, что косинус равен значению этой координаты. Найти тангенс немного сложнее. Тангенс угла прямоугольного треугольника равен противолежащему катету, деленному на прилежащий. В данном случае, в отличие от предыдущих, частное не является константой, поэтому вычисления несколько усложняются. Вспомним, что длина противолежащего катета равна координате y, а прилежащего -- координате x точки на единичной окружности; подставив эти значения, получим, что тангенс равен y/x. Поделив 1 на найденные выше значения, можно легко найти соответствующие обратные тригонометрические функции. Таким образом, можно рассчитать все основные тригонометрические функции:

    • sinθ=y
    • cosθ=x
    • tgθ=y/x
    • cosec=1/y
    • sec=1/x
    • ctg=x/y
  • Найдите и запомните значения шести тригонометрических функций для углов, лежащих на координатных осях , то есть углов, кратных π/2, таких как 0, π/2, π, 3π/2, 2π и т. д. Для точек круга, находящихся на координатных осях, это не представляет никаких проблем. Если точка лежит на оси Оx, синус равен нулю, а косинус -- 1 или -1, в зависимости от направления. Если же точка лежит на оси Оy, синус будет равняться 1 или -1, а косинус -- 0.

  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/6. Нанесите угол π/6 на единичную окружность. Вы знаете, как находить длины всех сторон особых прямоугольных треугольников (с углами 30-60-90 и 45-45-90) по известной длине одной из сторон, а поскольку π/6=30 градусов, данный треугольник является одним из особых случаев. Для него, как вы помните, короткий катет равен 1/2 гипотенузы, то есть координата y составляет 1/2, а длинный катет длиннее короткого в √3 раз, то есть равен (√3)/2, так что координата x будет (√3)/2. Таким образом, получаем точку на единичной окружности со следующими координатами: ((√3)/2,1/2). Пользуясь приведенными выше равенствами, находим:

    • sinπ/6=1/2
    • cosπ/6=(√3)/2
    • tgπ/6=1/(√3)
    • cosecπ/6=2
    • secπ/6=2/(√3)
    • ctgπ/6=√3
  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/3. Угол π/3 отображается на окружности точкой, у которой координата x равна координате y угла π/6, а координата y такая же, как x для этого угла. Таким образом, точка имеет координаты (1/2, √3/2). В итоге получаем:

    • sinπ/3=(√3)/2
    • cosπ/3=1/2
    • tgπ/3=√3
    • cosecπ/3=2/(√3)
    • secπ/3=2
    • ctgπ/3=1/(√3)
  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/4. Длина гипотенузы прямоугольного треугольника с углами 45-45-90 относится к длинам его катетов как √2 к 1, так же будут соотноситься и значения координат точки на единичной окружности. В итоге имеем:

    • sinπ/4=1/(√2)
    • cosπ/4=1/(√2)
    • tgπ/4=1
    • cosecπ/4=√2
    • secπ/4=√2
    • ctgπ/4=1
  • Определите, положительно или отрицательно значение функции. Все углы, принадлежащие одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку (одно быть положительным, второе -- отрицательным).
    • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
    • Для угла во втором квадранте все функции, за исключением sin и cosec, отрицательны.
    • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
    • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.
  • В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

    Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

    Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

    С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

    Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

    Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

    За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

    Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

    Другая интересная апория Зенона повествует о летящей стреле:

    Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

    В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

    среда, 4 июля 2018 г.

    Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

    Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

    Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

    Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

    Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

    В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

    А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

    Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

    Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

    воскресенье, 18 марта 2018 г.

    Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

    Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

    Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

    1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

    2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

    3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

    4. Складываем полученные числа. Вот это уже математика.

    Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

    С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

    Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

    Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

    Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

    Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

    Табличка на двери Открывает дверь и говорит:

    Ой! А это разве не женский туалет?
    - Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

    Женский... Нимб сверху и стрелочка вниз - это мужской.

    Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

    Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

    Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

    1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

    Координаты x лежащих на окружности точек равны cos(θ), а координаты y соответствуют sin(θ), где θ - величина угла.

    • Если вам сложно запомнить данное правило, просто помните, что в паре (cos; sin) "синус стоит на последнем месте".
    • Это правило можно вывести, если рассмотреть прямоугольные треугольники и определение данных тригонометрических функций (синус угла равен отношению длины противолежащего, а косинус - прилежащего катета к гипотенузе).
  • Запишите координаты четырех точек на окружности. "Единичная окружность" - это такая окружность, радиус которой равен единице. Используйте это, чтобы определить координаты x и y в четырех точках пересечения координатных осей с окружностью. Выше мы обозначили эти точки для наглядности "востоком", "севером", "западом" и "югом", хотя они не имеют устоявшихся названий.

    • "Восток" соответствует точке с координатами (1; 0) .
    • "Север" соответствует точке с координатами (0; 1) .
    • "Запад" соответствует точке с координатами (-1; 0) .
    • "Юг" соответствует точке с координатами (0; -1) .
    • Это аналогично обычному графику, поэтому нет необходимости запоминать эти значения, достаточно помнить основной принцип.
  • Запомните координаты точек в первом квадранте. Первый квадрант расположен в верхней правой части круга, где координаты x и y принимают положительные значения. Это единственные координаты, которые необходимо запомнить:

    • точка π / 6 имеет координаты () ;
    • точка π / 4 имеет координаты () ;
    • точка π / 3 имеет координаты () ;
    • обратите внимание, что числитель принимает лишь три значения. Если перемещаться в положительном направлении (слева направо по оси x и снизу вверх по оси y ), числитель принимает значения 1 → √2 → √3.
  • Проведите прямые линии и определите координаты точек их пересечения с окружностью. Если вы проведете от точек одного квадранта прямые горизонтальные и вертикальные линии, вторые точки пересечения этих линий с окружностью будут иметь координаты x и y с теми же абсолютными значениями, но другими знаками. Иными словами, можно провести горизонтальные и вертикальные линии от точек первого квадранта и подписать точки пересечения с окружностью теми же координатами, но при этом оставить слева место для правильного знака ("+" или "-").

    • Например, можно провести горизонтальную линию между точками π / 3 и 2π / 3 . Поскольку первая точка имеет координаты ( 1 2 , 3 2 {\displaystyle {\frac {1}{2}},{\frac {\sqrt {3}}{2}}} ), координаты второй точки будут (? 1 2 , ? 3 2 {\displaystyle {\frac {1}{2}},?{\frac {\sqrt {3}}{2}}} ), где вместо знака "+" или "-" поставлен знак вопроса.
    • Используйте наиболее простой способ: обратите внимание на знаменатели координат точки в радианах. Все точки со знаменателем 3 имеют одинаковые абсолютные значения координат. То же самое относится к точкам со знаменателями 4 и 6.
  • Для определения знака координат используйте правила симметрии. Существует несколько способов определить, где следует поставить знак "-":

    • вспомните основные правила для обычных графиков. Ось x отрицательна слева и положительна справа. Ось y отрицательна снизу и положительна сверху;
    • начните с первого квадранта и проведите линии к другим точкам. Если линия пересечет ось y , координата x изменит свой знак. Если линия пересечет ось x , изменится знак у координаты y ;
    • запомните, что в первом квадранте положительны все функции, во втором квадранте положителен только синус, в третьем квадранте положителен лишь тангенс, и в четвертом квадранте положителен только косинус;
    • какой бы метод вы ни использовали, в первом квадранте должно получиться (+,+), во втором (-,+), в третьем (-,-) и в четвертом (+,-).
  • Проверьте, не ошиблись ли вы. Ниже приведен полный список координат "особых" точек (кроме четырех точек на координатных осях), если двигаться по единичной окружности против часовой стрелки. Помните, что для определения всех этих значений достаточно запомнить координаты точек лишь в первом квадранте:

    • первый квадрант: ( 3 2 , 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},{\frac {1}{2}}} ); ( 2 2 , 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( 1 2 , 3 2 {\displaystyle {\frac {1}{2}},{\frac {\sqrt {3}}{2}}} );
    • второй квадрант: ( − 1 2 , 3 2 {\displaystyle -{\frac {1}{2}},{\frac {\sqrt {3}}{2}}} ); ( − 2 2 , 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( − 3 2 , 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},{\frac {1}{2}}} );
    • третий квадрант: ( − 3 2 , − 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ); ( − 2 2 , − 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( − 1 2 , − 3 2 {\displaystyle -{\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} );
    • четвертый квадрант: ( 1 2 , − 3 2 {\displaystyle {\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} ); ( 2 2 , − 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( 3 2 , − 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ).


  • gastroguru © 2017