Генератор рения 188. Многопрофильность залог нашего успеха

Радионуклиды l86 Re (7’i/2 = 90,6 ч) и l88 Re (Тц 2 = 6,9 ч), являясь Р -излучателями, так же как l53 Sm и ll7m Sn, имеют удобные для регистрации линии у-спектра с энергиями 137 и 155 кэВ, соответственно. Как следует из табл. 5.2 , получение IX6 Re возможно на среднепоточных реакторах путем облучения нейтронами порошковых или металлических мишеней из обогащенного рения-185. Все это делает его достаточно доступным для медицины. Вместе с тем для его транспортирования на большие расстояния требуется наработка высоких удельных активностей радионуклида, что создает сложности при последующем получении требуемых дозированных количеств препарата в клинических условиях. После облучения порошковые мишени переводят в рениевую кислоту путем их растворения в азотной кислоте или перекиси водорода. Для вскрытия металлических мишеней применяют 30 % раствор перекиси. К числу известных препаратов на основе IS6 Re относится его комплексное соединение с натриевой солью 1-гидроксоэтилидин ди- фосфоновой кислоты (HEDP).

В отличие от l86 Re радионуклид рений-188 является генераторным продуктом (3 -распада 18 w и образуется в результате ядерных превращений:

Для наработки материнского радионуклида W обычно применяют металлические порошковые мишени, а также мишени из окиси вольфрама, обогащенные по изотопу l86 W. В дальнейшем растворение металлических мишеней проводят в смеси (0,1 М NaOH и 30 % Н1О2), а оксида вольфрама - в растворе (0,1 М NaOH и 5 % NaOCl).

С учетом того, что W образуется в результате двух последовательных реакций (и, у), его производство целесообразно только на реакторах, имеющих поток нейтронов не менее 5 ? 10 м н/см 2 с. Расчет ве- личины удельной активности W, сделанный для такой цепочки превращений , показывает, что при потоке 510 14 н/см 2, с и времени облучения 100 дней она составит около 1,5 Ки/г. На реакторах с потоком 2 ? 10 15 н/см 2 с достигается выход радионуклида ~ 10 Ки/г за 43 часа облучения.

Для отделения l88 Re от материнского изотопа и получения его без

носителя используются хроматографические W/" Re-генераторы, где в качестве основного сорбента применяется оксид алюминия. На рис. 5.1 приведена схема генератора, разработанного в Ок-Риджской национальной лаборатории. Представленный генератор, помимо основной колонки с оксидом алюминия, имеет концентрирующие анионообменные колонки с катионитом и анионитом.

Генератор работает следующим образом: по коммуникации 1 шприцом через хроматоргафическую колонку, фильтр 2, катионообменную колонку с серебром 5, анионообменную колонку 3, пропускают 20 мл 0,155 М раствора NaCl, фильтруют и собирают в сборнике 9, снабженном воздушным фильтром 8. Хроматографическая и ионообменные колонки, а также сборник l88 Re расположены в защитных контейнерах. Трехходовые вентили 6 и 7 предназначены для проведения промывки и регенерации ионообменной колонки. Выход рения-188 с радиохимической чистотой более 99,0 % составляет более 90 %. Содержание примеси материнского радионуклида l88 W в элюате не превышает 1 10^%

от активности Re.

Рис. 5.1. Схема,HH W/ m Re генератора:

1 - подача элюента; 2 - фильтр; 3 - анионообменная колонка; 4 - ионообменная колонка; 5 - катионообменная колонка с серебром; 6 - трехходовой вентиль для отходов; 7 - трехходовой вентиль для промывочной воды и элюата; 8 - воздушный фильтр; 9 - общий сборник

Более простой и технологичный способ получения генератора рения-188 с высокой радионуклидной чистотой и объемной активностью целевого радионуклида был разработан в Институте ядерной физики АН Республики Узбекистан. Здесь для обеспечения высокой радионуклидной чистоты целевого продукта очистку от посторонних радионуклидных примесей проводят на предварительном этапе перед зарядкой генератора. С этой целью облученную мишень из металлического вольфрама, обогащенного по изотопу IS6 W до 99,79%, растворяют в перекиси водорода. Псрскисный раствор вольфрама подщелачивают до pH 10... 12 и проводят очистку от радионуклидных примесей путем пропускания щелочного раствора через колонку с оксидом алюминия, обработанного непосредственно перед употреблением 0,01... 0,10 М раствором щелочи. Полученный щелочной раствор вольфрамата собирают, подкисляют соляной кислотой до pH 3...4, дозируют и отправляют на зарядку генераторов. Адсорбцию поливольфрамат-ионов проводят на колонках высотой 7... 10 см и диаметром 0,8... 1,2 см, вмещающих до 5 г оксида АЬОз, предварительно обработанного 0,1 М раствором HCI при нагревании в течение 5... 10 мин. В нижней части колонки, кроме того, располагают фильтрующий слой из оксида алюминия в Н-форме.

Через 18 ч генераторы промывают 30 мл 0,9% раствором NaCl с pH 3...4. Элюирование рения-188 осуществляют тем же раствором, но объемом 10 мл. При этом обеспечивается радиохимический выход более 75,5 % и РХЧ препарата 99,9 %, pH 5,51. Содержание неактивных примесей Al, Fe, Си не более 5 мкг/мл, радионуклидных примесей li4 Cs, i37 Cs, 60 Со, 65 Zn, " 0m Ag, |40 Ва - менее К) 5 %, l88 W - менее 10 3 %.

Подобный генератор (ГРЕН-1) с активностью элюата рения-188 до 1 Ки был в 2006 году разработан в ГНЦ РФ ФЭИ. Медицинский соисполнитель - МРНЦ РАМН (г. Обнинск). Поставщиком сырья для производства этих генераторов является ОАО НИИАР (г. Димитрово- град). К настоящему времени на реакторе СМ-3 отработан режим облучения l86 W, при котором достигается удельная активность l88 W до 8 Ки/г.

Главное преимущество W/ Re-генераторов состоит в том, что они имеют длительный срок годности и предоставляют возможность получать элюат- натрия перренат, l88 Re с требуемой объемной активностью непосредственно в клиниках. Несмотря на более высокую энергию Р-частиц по сравнению с l86 Re, относительно короткий период полураспада l88 Re обеспечивает возможность снижения болевого синдрома при отсутствии поражения костного мозга. Такой эффект отмечается, на-

пример, при использовании препарата Re-HEDP взамен аналогичного 186 188 РФП на основе Re. Кроме того, при генераторном получении Re

появляется возможность для использования коммерчески доступных «реагентов», разработанных для диагностических РФП технеция-99т, например комплекса димеркаитоянгарной кислоты Re(V)-DMSA (отечественный аналог «Карбомек»). За рубежом и в России проводятся исследования по получению меченных рением микросфер альбумина.

Научно-технический семинар "Re-188 и радиофармацевтические препараты на его основе. Перспективы развития и применения" прошёл 21 июня 2018 года на базе ГНЦ РФ - ФЭИ.

На полях мероприятия на вопросы корреспондентов электронного издания сайт ответил начальник лаборатории ГНЦ РФ - ФЭИ Дмитрий СТЕПЧЕНКОВ.

ПРОДОЛЖЕНИЕ ПОСЛЕ ФОТО

Дмитрий Степченков, фото Сергей Стожилов

Дмитрий Владимирович, пожалуйста, несколько слов о семинаре.

Семинар посвящён генераторам рения-188, радиоактивного изотопа, использующегося в ядерной медицине для проведения терапевтических процедур. На его основе изготавливаются остеотропные препараты, то есть препараты, способные усваиваться в костях.

В мире для лечения костных метастаз используются различные радиофармпрепараты, в том числе на основе хлорида стронция-89 или самария-153. Но у них есть свои недостатки.

Так, у самария-153 относительно короткий период полураспада, порядка 46 часов. Транспортировать его от производителя до медицинского учреждения возможно только в тех случаях, когда доставка занимает небольшое время. А препараты на основе стронция в нашей стране тоже не получили широкого распространения.

Генераторы рения удобны в транспортировке на любые расстояния. Это относительно небольшие изделия. Вес собственно генератора составляет примерно 15 кг, а вес контейнера с полностью укомплектованным набором - примерно 20 кг. Получают рений-188 из генератора непосредственно в медицинском учреждении.

По какой реакции в генераторе получается рений-188?

Материнский изотоп - вольфрам-188. Он претерпевает бета-распад с периодом 69,4 суток, в результате которого получается рений-188, а он в свою очередь испытывает бета-распад с образованием стабильного осмия-188.

Важное преимущество рения-188 с точки зрения ядерной медицины состоит в том, что его бета-распад сопровождается гамма-линией. Бета-излучение даёт терапевтический эффект, а гамма-составляющая позволяет получить распределение введённого радиофармпрепарата по организму, то есть обеспечивает визуализацию.

Где производится вольфрам-188?

Вольфрам-188 нарабатывается в высокопоточных реакторах. В мире есть два крупнейших производителя этого изотопа - реактор HFIR в Окриджской национальной лаборатории (США) и димитровградский НИИАР, где он производится в нейтронной ловушке реактора СМ.

Насколько мы знаем, на HFIR сейчас вольфрам-188 практически не производится, а вот на российском реакторе работы по его получению продолжаются.

Возможно ли использовать для наработки вольфрама-188 реакторы с менее высокими потоками, чем в HFIR или СМ?

Всё упирается в физику и экономику. В связи с тем, что наработка вольфрама-188 происходит путём облучения вольфрама-186 через промежуточную стадию образования относительно короткоживущего изотопа вольфрам-187, то на реакторе с тепловым спектром нейтронов не удастся получить значимое количество вольфрама-188. Кроме того, он будет содержать примесь вольфрама-187.

На высокопоточных реакторах с точки зрения наработки вольфрама-188 мы добиваемся оптимальной продолжительности кампании облучения с максимальным выходом продукта.

Первые работы по медицинскому применению рения-188 в нашей стране велись в 80-ые годы Институтом биофизики Минздрава СССР (в настоящее время - ФГБУ ГНЦ ФМБЦ им. А.И.Бурназяна ФМБА России).

Они совпали по времени с длительным остановом реактора СМ-2, поэтому облучение вольфрамовых мишеней проводили на реакторе ИЯФ АН Узбекистана с плотностью потока менее 10 14 н/см 2 /c. - Прим. сайт.

Какие задачи по рению-188 выполняет ФЭИ?

Наш институт осуществляет переработку материнского сырья (соединения вольфрама-188), получаемого в АО "ГНЦ НИИАР". Мы делаем из него активную фармацевтическую субстанцию, которая потом применяется в генераторах рения-188.

Суициды раковых больных бывают чаще всего от непреодолимой боли, когда доступные обезболивающие препараты, кроме наркосодержащих, не помогают. Впрочем, оказывается, есть альтернативное средство — радионуклидная терапия


В России официально зарегистрировано 2,3 млн онкологических больных. В год фиксируется не менее 200 тыс. случаев вновь поставленного диагноза "рак". И у более чем 60% пациентов это уже третья или четвертая стадия, сопровождаемая сильными болями.

Таргетная диагностика


Стандартная схема глушения боли при раковых метастазах — это различные препараты с обезболивающим эффектом. Сначала что-то из группы нестероидных противовоспалительных средств, потом серьезнее, а в конечном счете пациент выходит на наркосодержащие препараты.

Неужели нет других методов? Есть, только широкой общественности они мало известны. Между тем радионуклидная терапия развивается в мире весьма интенсивно, в том числе в России. ЗАО "Фарм-Синтез" завершает клинические исследования оригинального радиофармацевтического препарата для терапии метастазов в скелете. Одна инъекция — и у большинства пациентов происходит существенное уменьшение болей на период до шести месяцев. Кто-то совсем отказывается от анальгетиков, кто-то значительно снижает дозы, а во многих случаях наблюдается даже регрессия метастазов, то есть улучшается качество и увеличивается продолжительность жизни.

Долгие годы в радионуклидной терапии метастазов в скелете применялись изотопы стронций-89 и самарий-153, которые помимо опухоли оказывали негативное воздействие на весь организм.

Но сейчас речь идет о препарате нового поколения. Изотоп, на базе которого он создан, обладает малой токсичностью, а носитель, доставляющий его в организм, идет точно к цели — опухоли. Цель по-английски "target", поэтому такие нацеленные препараты называют таргетными.

"Раньше врачи и подумать не могли о том, что можно добиться высокоспецифичного накопления терапевтического радиофармацевтического препарата именно в опухоли, воздействовать непосредственно на нее, минимально облучая другие органы. Наш препарат концентрируется локально — в метастазе, а значит, облучение идет изнутри самих очагов. И здоровые органы и ткани оберегаются от него,— поясняет Лев Волознев, руководитель отдела радиофармацевтических препаратов ЗАО "Фарм-синтез".— Предпосылкой для синтезирования терапевтического препарата была другая разработка — радиофармацевтический препарат для диагностики метастазов в скелете, который уже применяется в лечебных учреждениях России. Там носитель — золедроновая кислота, а изотоп — технеций-99м. Лучевая нагрузка на организм, которую получает человек при таком методе, вполне сравнима с облучением, которое человек получает, совершив трансатлантический перелет на самолете".

Диагностика проводится в гамма-камерах, которые регистрируют излучение изотопа (отображающееся на экране монитора как свечение) и формируют томографические снимки. Поскольку препарат накапливается именно в метастазе, то если есть свечение в скелете, значит, есть метастаз.

Идеальная пара


"Потом мы задались вопросом: а не навесить ли на золедроновую кислоту какой-нибудь более серьезный, бета-излучающий изотоп, чтобы оказывал терапевтический эффект? — продолжает Лев Волознев.— Конечно, лучевая нагрузка возрастет. Но самое главное, чтобы поглощенная доза максимально оставалась в метастазе. Этого мы и добились с комплексом золедроновой кислоты и рением-188".

Рений-188 — один из самых мощных бета-излучающих радионуклидов. Поток бета-частиц интенсивно воздействует на опухолевую ткань, патологические клетки, разрушающие кость, клетки, стимулирующие патологическое костеобразование, а также нервные окончания. Короткий период полураспада изотопа (17 часов) позволяет быстро достичь клинического эффекта, а костный мозг при этом не успевает пострадать. В итоге, по словам разработчиков, получилась "идеальная пара": золедроновая кислота, меченная технецием-99м,— диагностика, золедроновая кислота с рением-188 — терапия. В следующем году "Фарм-синтез" рассчитывает свой новый препарат для терапии метастазов в скелете уже вывести на рынок.

Стратегия "идеальной пары" лежит в основе современного направления медицины — тераностики ("theranostics", англ., от "therapy" — "лечение", "diagnostics" — "диагностика"), то есть создания препаратов для диагностики и терапии заболеваний на основе одной молекулярной платформы. Если золедроновая кислота с технецием-99м накопилась в метастазе и зарегистрировала распространение опухоли, то следом назначают золедроновую кислоту с рением-188, которая окажет терапевтический эффект.

В области диагностики и терапии нейроэндокринных опухолей у "Фарм-синтеза" тоже есть собственные разработки. Стратегия та же: носитель — пептидная молекула, которая связывается с рецепторами на поверхности опухоли, а на нее навешиваются различные изотопы. Индий-111 — для однофотонно-эмиссионной томографии, галлий-68 — для позитронно-эмиссионной томографии, а лютеций-177 — для радионуклидной терапии.

"Выявление болезни на ранних стадиях — важная задача,— поясняет Лев Волознев.— Собственно, поэтому основной вектор применения радиофармпрепаратов уходит в область диагностических направлений. Мы же стараемся это немного изменить и помимо препаратов для диагностики опухолей методами однофотонно-эмиссионной и позитронно-эмиссионной томографии создаем такие, которые диагностируют и следом лечат".

"Уникальность и перспективность изотопа рения-188 стала одной из причин организации осенью текущего года первого Международного конгресса по рению-188 (1WCRe, г. Коимбаторе, Индия),— дополняет Лев Волознев.— Конечно, мы выступим там с докладами. То есть нам удалось быть на уровне мировых разработок в этом направлении — нас знают, нас приглашают".

На ведущей международной конференции International Conference on Radiopharmaceutical Therapy (ICRT-2013) в Маниле (Филиппины) в 2013 году доклад исследователей ЗАО "Фарм-синтез" (Татьяны Кочетовой, д.м.н. Сергея Ширяева под руководством д.м.н. Валерия Крылова) по теме клинических исследований золедроновой кислоты с рением-188 признан лучшей научной работой. В текущем году новые данные по разработке были представлены на международной конференции по радионуклидной терапии ICRT-2015 4 мая в Инсбруке (Австрия).

Расходы при двух видах терапии метастатического поражения скелета (на пациента)

По данным ЗАО "Фарм-Синтез".

Технология облегчения


Разработать оригинальный препарат — дело достаточно затратное, в отличие от выпуска дженериков — копий уже созданного кем-то лекарства, чем сегодня многие и занимаются. К тому же такие разработки относятся к венчурным: если 5% из них достигает результата, это считается высокой эффективностью. По словам Льва Волознева, фармацевтические компании тратят на научные разработки 10-20% и более объема вырученных средств.

В нынешней экономической ситуации у отечественного разработчика возникают дополнительные проблемы — слишком высока доля импортной составляющей в виде оборудования, расходных материалов и не только этого. Некоторые виды исследований приходится заказывать за рубежом, потому что наши научные лаборатории по тем или иным причинам не могут их выполнить.

"Нас приглашают в Госдуму, Минпромторг, правительство РФ, где совместно пытаемся найти решения,— отмечает председатель совета директоров ЗАО "Фарм-синтез" Анна Назаренко.— Но нужно понимать, что результаты получим не завтра. Это достаточно серьезные и долгосрочные программы. И мы надеемся, что благодаря им в России будет создана мощная, адекватная современная система оказания лечебно-диагностической помощи". Правда, чтобы выстроить такую систему, как говорят специалисты, создать препарат мало. Очень много зависит от наличия специалистов в области ядерной медицины и оснащения клиник серьезным технологическим оборудованием.

По экспертным данным, в радионуклидной диагностике нейроэндокринных опухолей нуждаются до 3 тыс. человек ежегодно, а прошли необходимые исследования в прошлом году около 100. Все — в Российском онкологическом научном центре им. Н. Н. Блохина: больше негде. Радионуклидная терапия метастатического поражения скелета ежегодно необходима 14 тыс. пациентов, а получают ее не более 300.

Инновационные продукты ЗАО "Фарм-синтез", которые проходят сейчас разные этапы клинических исследований, могут изменить ситуацию. Фактически клиники будут получать не просто лекарство, а технологию. Так, препарат для лечения метастазов в скелете синтезируется прямо в отделении радионуклидной терапии и используется в амбулаторном режиме, без применения "горячих" палат. Рений-188 получают из генератора размером с двухлитровую банку, достаточно простого и удобного в использовании. Изотоп можно получать каждые три дня со сроком эксплуатации генератора до трех месяцев. Таким образом, один генератор даст возможность 70 пациентам полгода жить без боли.

Вопрос теперь в другом: смогут ли обычные клиники установить у себя необходимое оборудование? На него пока, к сожалению, ответа нет. Так же, как и на другой вопрос — об отдельном финансировании радионуклидной терапии метастатического поражения скелета да и вообще ядерной медицины. Тем более сейчас, когда финансовые обязанности государство передало страховщикам. В любом случае, по мнению председателя комитета по охране здоровья Государственной думы России Сергея Калашникова, национальная онкологическая программа должна быть шире, чем просто решение вопросов оснащения клиник новой аппаратурой и обеспечения лекарствами пациентов.

Анна Подпальная


Томографические снимки пациента после введения золедроновой кислоты, меченной рением-188, сделанные в ходе клинических исследований в МРНЦ им. Ф.И. Цыба. Светящиеся очаги — метастазы, в которых накапливается радиофармацевтический препарат

Использование: в ядерной медицине для терапевтических целей, для научных исследований и технологического контроля. Сущность изобретения: разработан способ получения генератора рения-188 с высокой радионуклидной чистотой и объемной активностью целевого радионуклида. Мишень из оксида вольфрама облучают нейтронами и растворяют в щелочи. Нерастворенный осадок растворяют в перекиси водорода. Полученный раствор подщелачивают до pH 12-14. Проводят очистку щелочного раствора пропусканием через колонку с оксидом алюминия в OH - -форме и подкисляют раствором соляной кислоты. Затем вольфрам-188 переводят в матрицу, сорбцией на оксиде алюминия в H + -форме в динамическом режиме, либо в статистическом с переносом матрицы в колонку с фильтрующим слоем из оксида алюминия в H + -форме. Элюирование рения-188 проводят растворами натриевых солей. 3 табл.

Изобретение относится к области преобразования химических элементов и получению радиоактивных источников, а именно к способам выделения радионуклида рения-188 из облученной мишени вольфрама радиохимическим методом, и может быть использовано в ядерной медицине для терапевтических целей, для научных исследований и технологического контроля. Известны способы получения генератора рения-188, заключающиеся в том, что облучают мишень из оксида вольфрама или вольфрамовой кислоты нейтронами, растворяют мишень, переводят в сорбируемую форму и затем в нерастворимую матрицу путем сорбции на оксиде алюминия и элюируют рений-188 растворами минеральных кислот и их солей С помощью этих способов невозможно получить генератор рения-188 с высокой объемной активностью, радионуклидной и химической чистотой целевого радионуклида. Представлены невыгодные условия сорбции вольфрама и элюирования рения. Недостаточны либо отсутствуют данные о характеристиках элюата рения-188. Не разработаны режимы изготовления и эксплуатации генераторной колонки, позволяющие создать технологию получения генератора нения-188 и использовать генератор для медицинских целей. Наиболее близким по технической сущности является способ изготовления генератора рения-188, заключающийся в том, что облучают мишень из вольфрама (оксида вольфрама) потоком нейтронов 310 14 н/см 2 с, растворяют оксид вольфрама в 2-10 М щелочи, нагретой до 50-90 o C, перевод в матрицу осуществляют взаимодействием щелочного раствора вольфрамита с кислым раствором, содержащим цирконил-ион, для образования осадка вольфрамита циркония, содержащего W-188, дополнительной обработкой этого осадка - доведением pH от 2,8 до 6, преимущественно 4,3, последовательной промывкой водой или физраствором, центрифугированием, декантацией водой, промывкой полярным органическим растворителем, смешивающимся с водой, затем органическим растворителем, смешивающимся с полярным органическим растворителем с низкой температурой кипения, сушкой осадка, причем однородность осадка достигается механической (шпателем) или ультразвуковой разбивкой стекловидного геля вольфрамита циркония, либо добавкой инертного носителя (оксида алюминия, кварца). Матрицу помещают в емкость для элюирования, а элюирование проводят из колонки растворами натриевых солей. Для очистки элюата рения-188 от примеси вольфрама-188 используется оксид алюминия или циркония в виде второй колонки либо слоя под матрицей, содержащей цирконилвольфрамат, через которую проходит элюент Известный способ является трудоемким. Он включает проведение большого числа операций, применение различных реактивов, органических растворителей, посуды, приборов (например, центрифуги), что осложняет процесс изготовления генератора рения-188 в серийном варианте в условиях высокой радиационной нагрузки. Невысок выход целевого продукта 55-65% Отсутствуют данные о радионуклидной чистоте рения-188 за исключением примеси W-188, необходимые для использования генератора рения-188 в терапевтических целях. Цель изобретения упрощение технологического процесса, позволяющего наладить промышленный выпуск генераторов рения-188 с обеспечением высокой объемной активности и радионуклидной чистоты целевого продукта. Поставленная задача достигается тем, что в способе получения генератора рения-188, включающем облучение мишеней из оксида вольфрама нейтронами, растворение мишени в щелочи, перевод в матрицу, содержащую W-188, помещение матрицы в емкость для элюирования и элюирование рения-188, нерастворенный в щелочи осадок оксидов низковалентных состояний вольфрама растворяют в перекиси водорода, подщелачивают до pH 12-14, объединенный щелочной раствор вольфрама подвергают очистке от радионуклидных примесей пропусканием через колонку с оксидом алюминия в OH - форме, подкисляют раствором соляной кислоты и переводят в матрицу, содержащую W-188, сорбцией на оксиде алюминия в H + -форме. Сорбцию проводят в динамическом режиме на колонке либо в статическом режиме с переносом матрицы в емкость для элюирования с фильтрующим слоем из оксида алюминия в H + -форме. Одним из основных условий получения генератора рения-188 высокой объемной активности и радионуклидной чистоты является получение радиоактивного сырья -материнского радионуклида вольфрама-188 оптимальной удельной и объемной активности и радионуклидной чистоты. Высокая удельная активность достигается использованием высоких потоков нейтронов для облучения мишеней, увеличением времени облучения, использованием мишеней из вольфрама, обогащенного по изотопу W-186. Однако, при этом наблюдается частичное восстановление вольфрама и образование оксидов низковалентных состояний вольфрама в виде нерастворимого в щелочи осадка, количество которого увеличивается при облучении в высоких потоках нейтронов и составляет 5-8% от общего количества W-188 при облучении в потоке (1-2)10 15 н/см 2 с в течение 30-40 эффективных суток и примерно 1% при облучении в потоке 10 14 н/см 2 с в течение 100 эффективных суток. Ввиду высокой стоимости радиоактивного сырья имеет смысл использовать W-188 из осадка в технологическом процессе изготовления генератора. Обработка нерастворенного в щелочи осадка раствором перекиси водорода после декантации или фильтрации щелочного раствора вольфрама при комнатной температуре позволили перевести его в раствор, а обработка щелочью до pH 12-14 позволила разрушить избыток перекиси водорода и объединить с основным щелочным раствором для участия в дальнейшем технологическом процессе. Очистка радиоактивных растворов вольфрама позволяет снизить возможность попадания в элюат рения-188 долгоживущих радионуклидных примесей, нарабатываемых в процессе длительного облучения мишенного материала из различных соединений вольфрама, содержащих малые и ультрамалые химические примеси (по паспорту <0,01%).

186 WO 3 с обогащением 99,79% в облученной мишени обнаруживается 110m Ag (0,2%), 137 Cs (0,17%), 65 Zn (0,06%), 95 Zr- 95 Nb (2,2%), 103 Ru- 103 Rh (1%), 106 Ru- 106 Rh (0,13%), 140 Ba- 140 La. В случае WO 3 "для оптического стекловарения" естественного состава большое количество 134 Cs. В случае наиболее чистого мишенного материала 186 WO 3 с обогащением 96% содержание радионуклидных примесей незначительно, однако вклад их в общую активность увеличивается по мере хранения радиоактивного сырья вследствие распада W-188, тем самым снижая срок годности радиоактивного сырья и генератора, что особенно существенно для генераторов медицинского назначения. При облучении в менее интенсивных потоках нейтронов-ное содержание радионуклидных примесей выше, чем при облучении в потоках 10 15 н/см 2 с. Часть радионуклидных примесей при элюировании попадает в раствор целевого радионуклида Re-188. основными радионуклидными примесями, обнаруженными в элюатах генераторов 188 W- 188 Re, приготовленных из различного радиоактивного сырья, являются 134,137 Cs, 110m Ag, 60 Co, 65 Zn, а также 140 Ba в свежезаряженных генераторах (Т 1/2 12,8 дн). -спектры элюатов рения-188 генераторов активностью 100 мКи приготовлены из неочищенного вольфрама-188. Пример радионуклидных примесей в нескольких элюатах, отобранных в течение месяца после изготовления генераторов 2 мес. после окончания облучения (1) и через 5-6 мес. после изготовления (2) -приведен в табл.1. Проведение очистки от радионуклидных примесей на оксиде алюминия в OH - -форме позволяет сорбировать основную их часть, практически не извлекая вольфрам-188, оптимальные условия разделения наблюдаются в случае использования в качестве сорбента Al 2 O 3 , обработанного непосредственно перед использованием 0,1-1 н NaOH, в качестве водной среды - растворы вольфрама pH 12-14 (табл.2). Обработка оксида алюминия 0,1-1 н NaOH и заправка очистительной колонки непосредственно перед проведением очистки позволяет максимально активировать сорбент и снизить количество растворенного алюминия в очищенном щелочном раствора вольфрама, что наблюдается при использовании необработанного сорбента. Проведение очистки W от радионуклидных примесей в динамических условиях обеспечивает количественное извлечение Cs, Co, Ag, Zn, Ba и распределение их в верхней части хроматографической колонки (табл.3), так как коэффициенты распределения на порядок выше, чем в статических условиях. Подкисление очищенного щелочного раствора вольфрама 1-2 н HCl при переводе в сорбируемую форму изополивольфраматы обеспечивает оптимальную концентрацию вольфрама (505) мг/мл и соответственно оптимальную объемную активность. Использование более концентрированных растворов HCI может привести к выпадению W в осадок, более разбавленных к снижению концентрации и объемной активности W-188. Доведение до pH 12-14 щелочного раствора, полученного при растворении нерастворенного в 2 н NaOH осадка оксидов низковалентных состояний вольфрама в перекиси водорода с последующим подщелачиванием, обеспечивает оптимальную очистку от Cs, Co, Ag, Zn, Ba и минимальную потерю вольфрама на очистительной колонке. Подкисление щелочных растворов вольфрама соляной кислотой и обработка сорбента соляной кислотой обеспечивают оптимальную сорбцию вольфрама в виде изополивольфраматов на оксиде алюминия в H + -форме. Наилучшая сорбция достигается при значении pH раствора вольфрама, равном 3-4, и при обработке оксида алюминия 0,1 н HCl. Сорбция вольфрама в динамических условиях обеспечивает серийный выпуск генераторов в условиях работы с высокой радиоактивностью и дистанционного управления технологическим процессом. Сорбция вольфрама в статических условиях с переносом сорбата в колонку с фильтрующим слоем в случае низкой удельной или объемной активности, т.е. большого весового или объемного количества вольфрама, позволяет получить генератор максимальной активности для данного радиоактивного сырья и при этом снизить вероятность попадания W-188 в элюат целевого радионуклида рения-188, продлить срок годности несвоевременно перерабатываемого радиоактивного сырья или изготовленного генератора. Пример 1. 1 г WO 3 (H 2 WO 4), обогащенного по изотопу W-186 (96-99,8%) или естественного состава, облучали в потоке (1-2)10 15 н/см 2 с в течение 28 сут. Образец после охлаждения в течение 20 сут вскрывали, переносили в колбу 1 на 50 мл (1), содержащую 8 (7,2) мл 2 н NaOH, нагревали на плитке при 200-300 o C в течение 10-20 мин, остужали. Оксид алюминия (2 г) обрабатывали в стакане на 50 мл 0,1-1 н NaOH при нагревании на плитке в течение 5-10 мин, переносили в колонку размером h 10 см, =0,8 см. Щелочной раствор, осторожно отделяя от нерастворенного осадка, пропускали через колонку с Al 2 O 3 в OH - -форме, промывали осадок в колбе и колонку 2-4 мл 1 н NaOH, собирали элюат в колбе на 50 мл. Нерастворимый в щелочи осадок в колбе 1 растворяли в 2 мл 15-20% H 2 O 2 , подщелачивали 2 мл 2 н NaOH до pH 12-14, пропускали щелочной раствор через ту же колонку с Al 2 O 3 в OH - -форме. Объединенный щелочной раствор подкисляли 1 н HCl (12 мл) до pH 3-5, переносили в цилиндр, измеряли объем, отбирали аликвоту для измерения объемной активности, радионуклидных примесей, рассчитывали удельную активность и концентрацию вольфрама. С помощью дозатора готовили флаконы с радиоактивным раствором, обеспечивающим зарядку генератора заданной активности из расчета A 188 w: A 188 Re = 1,3. Готовили серию колонок высотой 7-10 см, 0,8-1,2 см с содержанием Al 2 O 3 1-5 г, предварительно обработанным 0,1 н HCl при нагревании 5-10 мин. Колонки и флаконы с радиоактивным раствором стерилизовали в автоклаве в течение 15 мин при 120 o C и давлении 1,1 атм. Колонки помещали в защитный контейнер с внутренними коммуникациями (типа ГТ-2). зарядку генераторной колонки проводили с помощью вакуумированных флаконов или системы разрежения со скоростью 8-20 мл/мин. Промывали генератора 0,9% NaCl pH 3-4 (30 мл) через 18 ч после зарядки и элюировали Re-188 в виде Na 188 ReO 4 тем же раствором с помощью вакуумированных флаконов объемами по 10 мл. Отбирали и исследовали элюаты Re-188 периодически в течение срока годности генератора полугода, года. Определяли объемную активность, радиохимический выход, радиохимическую чистоту (РХЧ), pH, состав химических и радионуклидных примесей и другие характеристики элюата. Объемная активность составляла 0,1-10 мКи/мл, радиохимический выход 755% в объеме 10 мл, РХЧ 99,9% pH 5,51, содержание неактивных примесей Al, Fe, Cu менее 5 мкг/мл, радионуклидных примесей 134 Cs, 137 Cs, 60 Co, 65 Zn, 110m Ag, 140 Ba менее 10 -6 188 W менее 10 -3 Характеристики элюата удовлетворяют медико-техническим требованиям. Пример 2. Поясняет второй вариант зарядки генератора с наружными коммуникациями. Облучение, растворение образцов, очистку от радионуклидных примесей, перевод в сорбируемую форму проводили как в примере 1. Готовили колонки размером h 10 см, o 1,2 см с содержанием Al 2 O 3 в H + -форме 3-6 г, завальцовывали. Рассчитанный объем радиоактивного раствора 2-10 мл вносили в колонки с помощью дозатора с иглой либо флаконов и системы разрежения. Колонки помещали в защитный контейнер с наружными коммуникациями типа КСУ-2 НРЖ, промывали через 6-18 ч 30-60 мл 0,9% NaCl pH 3-4 и затем элюировали Re-188 растворами натриевых солей периодически в течение года. Характеристики элюата существенно не отличались от характеристик элюатов генераторов, приведенных в примере 1, активностью 1-100 мКи. Пример 3. Поясняет вариант зарядки генераторов с наружными коммуникациями в статическом режиме в случае растворов вольфрама низкой объемной активности. Облучение мишеней из вольфрама проводили в потоках 10 14 н/см 2 с в течение 100-120 сут эффективного времени. Переработку и очистку щелочных растворов от радионуклидных примесей, перевод в сорбируемую форму проводили как в примерах 1, 2. Сорбцию проводили из больших объемов растворов вольфрама низкой удельной и объемной активности (10 мл) в статическом режиме в колбах на 50 мл, содержащих 2-5 г Al 2 O 3 в H + -форме в течение 2 ч при перемешивании. Готовили колонки с 1-2 г Al 2 O 3 в H + -форме в качестве фильтрующего слоя, сорбат из колбы переносили на воронку с бумажным фильтром, промывали 0,9% NaCl pH 3-4 (50-60 мл), переносили в колонку протыканием фильтра стеклянной палочкой, обмывая 5 мл 0,9% NaCl pH 3-4. Колонку завальцовывали, стерилизовали в автоклаве в течение 15 мин при 120 o C и давлении 1,1 атм, помещали в защитный контейнер типа КСУ-2 НРЖ. Содержание W в генераторах до 500 мг. Характеристики элюата за исключением объемной активности Re-188 аналогичны характеристикам элюатов генераторов высокой удельной активности. Содержание радионуклидных примесей не превышало 10 -6 Таким образом, сочетание предлагаемых существенных отличий: растворение нерастворенного в щелочи осадка вольфрама в перекиси водорода и подщелачивание его до pH 12-14, проведение очистки щелочного раствора от радионуклидных примесей пропусканием через колонку со специально обработанным оксидом алюминия, перевод в сорбируемую форму и в матрицу сорбцией на оксиде алюминия в H + -форме в динамическом и статическом режимах с известными признаками является необходимым и достаточным для решения поставленной задачи: упрощения технологического процесса, позволяющего наладить промышленный выпуск генераторов рения-188 с обеспечением высокой объемной активности и радионуклидной чистоты целевого продукта.


Владельцы патента RU 2567728:

Группа изобретений относится к радиофармацевтическому препарату для терапии костных тканей скелета и способу получения данного радиофармпрепарата (РФП), который может быть использован для радионуклидного лечения в онкологии, а именно терапии костных поражений скелета. Способ заключается в следующем: получают стерильный раствор, состоящий из лиганда, восстановителя и антиоксиданта, в который затем вводят нерадиоактивный рений в виде перрената натрия (NaReO 4), полученный раствор нейтрализуют, фильтруют, замораживают и лиофильно высушивают с последующим введением раствора радиоактивного рения-188 (188 Re) (Na 188 ReO 4) с протеканием реакции комплексообразования 188 Re с лигандом. Группа изобретений позволяет проводить терапию болевого синдрома при костных метастазах. 2 н. п. ф-лы, 3 ил., 4 табл.

Изобретение относится к способу получения стерильного раствора, состоящего из монокалиевой соли 1-гидроксиэтилидендифосфоновой кислоты дигидрата, восстановителя и антиоксиданта, в который затем вводят нерадиоактивный рений в виде перрената натрия (NaReO 4). Полученный раствор нейтрализуют, фильтруют, замораживают и лиофильно высушивают с последующим введением раствора радиоактивного рения-188 (188 Re) (Na 188 ReO 4) с протеканием реакции комплексообразования 188 Re с лигандом. Изобретение позволяет получить стерильный радиофармпрепарат (РФП), время приготовление которого сокращено до 30-60 минут за счет упрощения технологического цикла до одной стадии.

Изобретение также относится к радиофармацевтическому средству для терапии костных поражений скелета.

Известен способ получения дифосфоната, меченного 188 Re . Способ получения меченного дифосфоната осуществляется следующим образом: во флаконе смешивают 15 мг натриевой соли 1-гидроксиэтилидендифосфоновой кислоты (Na 2 HEDP), 4.5 мг хлористого олова (SnCl 2 ·Н 2 О) и 4.0 мг гентизиновой кислоты. Полученную смесь растворяют в соответствующем количестве дистиллированной воды, замораживают и подвергают сублимационной сушке. К высушенной смеси добавляют 1.0 мл раствора, содержащего 0.01-0.1 мг неактивного перрената аммония (NH 4 ReO 4). Затем смесь нагревают на кипящей водяной бане в течение 15 минут. После этого смесь охлаждают до комнатной температуры и доводят pH до 5-6 путем прибавления 1 мл 0.3 М раствора ацетата натрия. Связывание 188 Re с лигандом (Na 2 HEDP) составляет 95.2-95.6%. Стабильность комплексного соединения 188 Re-(Na 2 HEDP) сохраняется в течение 2 часов. В последующие сроки комплекс разрушается и количество связанного 188 Re с лигандом через 3 часа составляет около 94%, через 24 часа - около 93%.

Недостаток этого способа состоит в сложности получения препарата в клинических условиях и сравнительно невысокая его стабильность.

Известен способ получения дифосфоната, меченного 188 Re , применимый в лабораторных условиях. Способ состоит в том, что в смесь реагентов, состоящую из 2-20 мг (0.01-0.15 М) натриевой соли 1-гидроксиэтилидендифосфоновой кислоты (Na 2 HEDP), 2.5 мг (0.0005-0.02 М) хлористого олова (SnCl 2 ·H 2 O) и 0.5-5 мг (3·10 -3 ·3.5·10 -2 М) гентизиновой кислоты, добавляют раствор перрената (l86 Re или 188 Re), содержащий стабильный рений с концентрацией 5·10 -6 -2·10 -3 М. Полученную смесь нагревают и выдерживают при 80-100°C в течение 10-30 минут. Затем ее охлаждают и доводят pH раствора до 5.0-6.0. Радиохимические примеси перрената и диоксида рения в препарате не превышали 1.5%.

Недостаток этого способа состоит в сложности получения препарата в клинических условиях.

Прототипом предлагаемого технического решения является способ , заключающийся в том, что на первой стадии готовят стерильный раствор, содержащий смесь радиоактивного перрената натрия (Na 188 ReO 4) с объемной активностью 148 до 2960 МБк/мл и нерадиоактивного перрената натрия (NaReO 4) с концентрацией 10 -4 -10 -3 моль/л. На второй стадии приготовленный раствор добавляют к лиофилизованной смеси реагентов, в состав которой входит лиганд (1-гидроксиэтилидендифосфоновая кислота), восстановитель (SnCl 2 ·Н 2 О) и антиоксидант (аскорбиновая кислота). Далее смесь нагревают и выдерживают при 90 - 100°C в течение 15-30 минут. На третьей стадии смесь охлаждают и нейтрализуют до pH не более 7. В результате получают стерильный инъекционный радиофармацевтический препарат.

Недостаток способа состоит в технологической сложности, которая приводит к увеличению продолжительности его приготовления в клинических условиях. Сложность обусловлена наличием трех стадий получения радиофармрпепарата. Для его приготовления в условиях клиники необходимо иметь три флакона со стерильными реагентами: один флакон с лиофилизованной смесью, содержащий лиганд, восстановитель и антиоксидант; флакон со стабильным рением в виде перрената натрия и третий флакон с раствором для нейтрализации радиофармпрепарата. Реализация способа требует контроль и корректировку pH получаемого раствора, что накладывает дополнительные трудности, так как для корректировки pH продукта необходимо иметь стерильный раствор фармацевтического качества, необходимо использовать дополнительное оборудование и проводить контроль продукта после корректировки кислотности, а также проводить все эти манипуляции в асептических условиях. Помимо этого большее количество операций, при приготовлении РФП, в условиях медицинского учреждения потребует дополнительных мер по обеспечению радиационной безопасности и их реализации.

Наличие стерильного набора реагентов, содержащий три флакона, значительно увеличивает стоимость конечного продукта и время его приготовления, что приводит к нежелательному повышению облучения персонала клиники. Таким образом, предложенный способ получения радиофармпрепарта неудобен для практического применения.

Техническим результатом предлагаемого изобретения является упрощение способа получения радиофармацевтического препарата за счет эффекта, получаемого при объединении нерадиоактивного (NaReO 4) и радиоактивного (Na 188 ReO 4) рения с лиофилизатом в условиях одной стадии. При этом представляется возможным сократить время приготовления стерильного радиофармпрепарата до 30-60 минут за счет упрощения технологического цикла до одной стадии.

Суть предлагаемого изобретения заключается в том, что в способе, включающем получение стерильного раствора, состоящего из монокалиевой соли 1-гидроксиэтилидендифосфоновой кислоты дигидрата, восстановителя и антиоксиданта, вводят нерадиоактивный рений в виде перрената натрия (NaReO 4). Полученный раствор нейтрализуют, фильтруют, замораживают и лиофильно высушивают с последующим введением раствора радиоактивного рения-188 (Na 188 ReO 4). Затем нагревают до проявления реакции образования комплексного соединения 188 Re с лигандом. После охлаждения полученный радиофармпрепарат пригоден для использования в клинике.

Таким образом, по предложенному способу получен радиофармпрепарат, пригодный для терапии костных поражений скелета, приготавливаемый в одну стадию в клинических условиях.

Приведенные примеры иллюстрируют реализацию способа.

В колбу с круглым дном и двумя горловинами емкостью 250 мл, снабженную капельной воронкой и магнитной мешалкой, помещают 10 мл 20% раствора монокалиевой соли 1-гидроксиэтилидендифосфоновой кислоты (КОЭДФ - лиганд) (2 г, 8.16·10 -3 моль), добавляют 100 мл воды, добавляют 1.12 г (5.91·10 -3 моль) двухлористого олова (SnCl 2) -восстановитель и перемешивают до полного его растворения. К полученному раствору добавляют 0.7 г (3.97·10 -3 моль) аскорбиновой кислоты (антиоксидант) и перемешивают до полного растворения. После этого добавляют 0.0365 г (1.335·10 -3 моль) перрената натрия (NaReO 4) и перемешивают в течение 20 минут. Полученную смесь нейтрализуют 0.1 М раствором гидроксида натрия (NaOH) до pH 3.0. Раствор доводят до общего объема 150 мл, перемешивают в течение 10 минут и проводят стерилизующую фильтрацию. Полученный раствор расфасовывают во флаконы для инъекций емкостью 10 см 3 по 1.5 мл. Содержимое флаконов замораживают при температуре жидкого азота и помещают их в камеру сублиматора, охлажденную до -20°C. В камере создают давление 0.1-0.2 мм рт.ст. с помощью вакуумного насоса. При этих условиях проводят лиофильную сушку в течение 23-х часов, температуру камеры поднимают до +20°C и проводят сушку в течение 1 часа. В содержимое флакона вводят 5 мл раствора радиоактивного рения-188 (Na 188 ReO 4), перемешивают до полного растворения содержимого флакона, нагревают на кипящей водяной бане до 95-100°C и выдерживают в течение 30 минут для проведения

реакции образования комплексного соединения 188 Re с лигандом, охлаждают до комнатной температуры. После охлаждения раствор радиофармпрепарата готов для инъекций.

В колбу с круглым дном и двумя горловинами емкостью 250 мл, снабженную капельной воронкой и магнитной мешалкой, помещают 10 мл 20% раствора монокалиевой соли 1-гидроксиэтилидендифосфоновой кислоты (КОЭДФ - лиганд) (2 г, 8.16·10 -3 моль), добавляют 100 мл воды, добавляют 1.12 г (5.91·10 -3 моль) двухлористого олова (SnCl 2) -(восстановитель) и перемешивают до полного его растворения. К полученному раствору добавляют 0.7 г (3.97·10 -3 моль) аскорбиновой кислоты (антиоксидант) и перемешивают до полного растворения. После этого добавляют 0.0365 г (1.335·10 -3 моль) перрената натрия (NaReO 4) и перемешивают в течение 20 минут. Полученную смесь титруют 0.1 М раствором гидроксида натрия (NaOH) до pH 3.0. Раствор доводят до общего объема 150 мл, перемешивают в течение 10 минут и фильтруют через фильтр с размером пор 0.22 мкм. Полученный раствор расфасовывают во флаконы для инъекций емкостью 10 см 3 по 1.5 мл. Содержимое флаконов замораживают при температуре жидкого азота и помещают их в камеру сублиматора охлажденную до -20°C. В камере создают давление 0.1-0.2 мм рт. ст. с помощью вакуумного насоса. При этих условиях проводят лиофильную сушку в течение 23-х часов, температуру камеры поднимают до +20°C и проводят сушку в течение 1 часа. В содержимое флакона вводят 5 мл раствора радиоактивного рения-188 (Na 188 Re04), перемешивают до полного растворения содержимого флакона, нагревают на кипящей водяной бане до 95-100°C и выдерживают в течение 60 минут для проведения реакции образования комплексного соединения 188 Re с лигандом, охлаждают до комнатной температуры. После охлаждения раствор радиофармпрепарата готов для инъекций.

Подтверждение технического результата

В результате объединения нерадиоактивного и радиоактивного рения-188 получен новый технический результат в предлагаемом изобретении. Он состоит в упрощении способа получения радиофармпрепарата «Фосфорен, 188 Re», заключающегося в получении РФП в одну стадию вместо трех, как это выполнялось по прототипу. Вместе с тем исключена стадия нейтрализации готового радиофармпрепарата. Предложенное решение позволяет сократить время его приготовления в медицинском учреждении и тем самым дает возможность существенно снизить дозовую нагрузку на медицинский персонал во время получения меченного препарата.

Клинические исследования радиофармпрепарата «Фосфорен, 188 Re», приготовленного из лиофилизованной композиции реагентов с введенным радиоактивным рением-188 (Na 188 ReO 4), проводились в исследовательских центрах:

Отделение радиохирургического лечения открытыми радионуклидами ФГБУ «МРНЦ» МЗРФ, Обнинск,

Отдел ядерной и радиационной медицины ФГБУ «Российского научного центра Рентгенорадиологии» МЗРФ, Москва.

Клиническое исследование проведено в соответствии с принципами Хельсинской декларации по проведению биомедицинских исследований с участием людей, в соответствии с местными требованиями и Правилами проведения качественных клинических испытаний, а также в соответствии с действующими нормативными требованиями, а именно: ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ, ГОСТ Р 52379-2005 НАДЛЕЖАЩАЯ КЛИНИЧЕСКАЯ ПРАКТИКА, Москва 2005; РОССИЙСКАЯ ФЕДЕРАЦИЯ ФЕДЕРАЛЬНЫЙ ЗАКОН ОБ ОБРАЩЕНИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ, N61-ФЗ, 12 апреля 2010 года; Постановление Правительства РФ от 13 сентября 2010 г. N 714 «Об утверждении Типовых правил обязательного страхования жизни и здоровья пациента, участвующего в клинических исследованиях лекарственного препарата».

Основной (первичной) целью исследования являлось сравнение эффективности паллиативной терапии болевого синдрома при костных метастазах РФП «Фосфорен, 188 Re» и «Стронция хлорид, 89 Sr» путем оценки степени анальгетического действия. Дополнительными (вторичными) целями исследования являлось сравнение безопасности и переносимости РФП «Фосфорен, 188 Re» и «Стронция хлорид, 89 Sr» на основании оценки нежелательных явлений в ответ на введение препарата и степени гемотоксичности по уровню тромбоцито- и лейкопении.

Исследование проводилось среди пациентов, страдающих злокачественными новообразованиями, у которых при клиническом, рентгенологическом и/или сцинтиграфическом исследовании были выявлены метастазы в кости, сопровождающиеся выраженным болевым синдромом, и/или наблюдалось прогрессирование костных метастазов на фоне проводимого предшествующего лечения.

Для участия в исследование были рекрутированы 57 больных. Из них, согласно критериям отбора, включены 50 больных: 30 с применением радиофармпрепарата «Фосфорен, 188 Re» (опыт) и 20 с применением препарата сравнения «Стронция хлорид, 89 Sr» (контроль).

В обеих группах у пациентов наблюдался достаточно выраженный болевой синдром, определенные по шкале интенсивности костных болей.

Каждый из терапевтических радиофармпрепаратов вводился однократно внутривенно, при условии соблюдения правил радиационной безопасности.

Средняя терапевтическая доза препарата «Фосфорен, 188 Re» составляла 3120 МБк (80,4 мКи). Однако у пациентов с избытком или недостатком массы тела рекомендуемая доза определялась из расчета 44,0 МБк/кг массы тела. Поэтому проявлялась девиация доз в зависимости от массы тела больных. Препарат « 89 Sr хлорид» вводился внутривенно, в соответствии с рекомендуемой по Инструкции терапевтической дозе 150 МБк (4,0 мКи).

Средняя и удельная доза для препарата «Фосфорен, 188 Re» приведена в таблице 1.

После введения препарата проводился мониторинг состояния пациента, в ходе которого проводилась регистрация нежелательных явлений и, по необходимости, их коррекция. Еженедельно выполнялся забор крови для лабораторного исследования.

Всем пациентам проводили:

1. Анализ крови с определением следующих параметров: количество лейкоцитов, тромбоцитов, концентрации тромбоцитов с последующий оценкой гематологической токсичности по критериям CTC-NCIC.

2. Биохимический анализ показателей крови (креатинин, мочевина, электролиты, АЛТ, ACT, билирубин).

3. Оценку динамики и интенсивности костных болей.

В ходе проведения исследования производился учет всей сопутствующей терапии. Отдельно оценивалась терапия направленная на уменьшение болей, связанных с костными метастазами. Производился раздельный учет опиатных и неопиатных анальгетиков. Особое внимание уделялось учету приема опиатных анальгетиков, что отражено в таблице 2.

Как видно из данных таблицы 2, частота приема опиатных анальгетиков не отличалась в исследуемых группах больных.

Эффект лечения больных раком предстательной, молочной и щитовидной железы оценивался через 1, 3 и 6 месяцев после инъекции. Для остальных групп этот период был ограничен 3 месяцами. Это было связано, с тем, что при трех упомянутых выше заболеваниях прогрессирование обусловлено, в основном, костными метастазами и основной проблемой - долгое время могут быть боли в костях и снижение активности. При других опухолях (рак легких, рак желудка др.) в такие сроки, как 6 и более месяцев после введения, наиболее значимую роль начинают играть внескелетные поражения, что обычно и определяет ухудшение общего состояния пациентов в этот период.

Результат лечения был оценен в каждом клиническом случае для каждого больного по отдельности. Оценка производилась как по критерию лечение эффективно, неэффективно, так и с использованием 5-балльной шкалы оценки эффективности.

Несмотря на больший терапевтический эффект в основной группе (эффект лучше на 12%) статистически значимых различий не выявлено (р=0,089, тест Спирмена), что демонстрирует сходную эффективность лечения обоих исследуемых препаратов в целом по группам.

С другой стороны, при анализе клинического эффекта обезболивания путем оценки распределения больных по степени (баллам) снижения по шкале оценки динамики костных болей было выявлено существенное преимущество терапии в основной группе по числу больных, у которых болевой синдром снизился на 3 балла (фиг. 1)

Различия в числе больных, у которых болевой синдром не снизился или снизился на 1 и 2 балла, были недостоверны (р>0,08 - тест Спирмена). С другой стороны, основное число больных, у которых отмечено снижение боли на 3 балла (47%) было существенно больше в основной группе (47%), по сравнению с контролем (18%). Эта разница оказалась достоверной (р<0,02 - тест Спирмена).

Общий результат эффективности лечения обеими препаратами приведен на фиг. 2. В основной группе позитивный результат терапии составил 90%, в контроле 77%. В целом препарат «Фосфорен, 188 Re» продемонстрировал достоверно лучший результат по сравнению с контролем (р=0,012, тест Мак Немара).

Начальный уровень показателей крови, которые оценивались с целью анализа переносимости терапии, представлен в таблице 3.

Как видно из таблицы 3, начальный уровень показателей крови не отличался у пациентов основной и контрольной групп (р>0,09).

Результаты оценки гематотоксичности в баллах, полученные по шкале СТС - NCIC, представлены в таблице 14 на фиг. 3.

Средние уровни гематотоксичности не отличались у больных обеих групп (р>0,5) Ни в одной из групп не было выявлено 4 - самой тяжелой степени гематотоксичности. В то же время число больных с гематотоксичностью 2 степени было достоверно больше в группе контроля (29% и 10%, соответственно, р<0,05, тест Спирмена). Число больных с остальными степенями токсичности в группе пациентов, получавших препарат «Фосфорен, 188 Re», по сравнению с группой больных, получавших препарат «Стронция хлорид, 89 Sr» - не отличалось, (р=0,367, тест Спирмена).

Результаты выполненного клинического исследования свидетельствуют, что оба препарата «Фосфорен, 188 Re» и «Стронция хлорид, 89 Sr» демонстрируют сходную эффективность в плане лечения болей, связанных с костным метастазированием злокачественных новообразований различной локализации.

Однако препарат «Фосфорен, 188 Re» проявил достоверно большую терапевтическую активность.

В то же время было установлено, что «Фосфорен, 188 Re» демонстрирует лучший профиль безопасности как по переносимости, так и по числу серьезных нежелательных явлений по сравнению с контрольным препаратом сравнения «Стронция хлорид, 89 Sr». Таким образом, по результатам проведенного исследования радиофармацевтический

Источники информации

1. Lin W.Y., Hsieh J.F., Lin С.Р., Hsieh В.Т., Ting G., Wang S.J., Knapp F.F. Effect of reaction conditions on preparations of rhenium-188 hydroxyethylidene diphosphonate complexes, Nucl. Med. Biol., 1999, V. 26 P. 455-459.

2. Piprs D.W. Preparation of rhenium phosphonate therapeutic agents for bone cancer without purification. Патент США №5021235 (1991).

3. Басманов В.В., Колесник О.В. Способ получения радиотерапевтического препарата. Авт. свид. №2164420 (2001).

4. Отчет о клинических исследованиях с целью установления эффективности генераторного терапевтического радиофармпрепарата с рением-188 для пациентов с определенным заболеванием по государственному контракту от 19.06.2012 №12411.0810200.13.В15 НИОКР «Клинические исследования генераторного терапевтического радиофармпрепарата с рением-188. Организация опытно-промышленного производства» шифр «Изотоп 4.1».

1. Способ получения радиофармпрепарата для лечения костных поражений скелета, включающий получение стерильного раствора, состоящего из лиганда, восстановителя и антиоксиданта, отличающийся тем, что в раствор вводят нерадиоактивный рений в виде перрената натрия (NaReO 4), полученный раствор нейтрализуют, фильтруют, замораживают и лиофильно высушивают с последующим введением раствора радиоактивного рения-188 (Na 188 ReO 4) и проводят реакцию комплексообразования 188 Re с лигандом.

2. Радиофармацевтический препарат для лечения костных поражений скелета, полученный способом по п. 1.

Похожие патенты:

Группа изобретений относится к медицине и касается способа получения [Ас-225]-p-SCN-Bn-DOTA/HuM195 радиоиммуноконъюгата (радиоиммуноконъюгата Ас-225), включающего стадии конъюгирования p-SCN-Bn-DOTA с антителом HuM195 в конъюгирующей реакционной смеси для получения конъюгированной биологической молекулы, очистки реакционной смеси для удаления неконъюгированных хелатообразующих агентов и хелатирования одного или нескольких Ас-225 радионуклидов с конъюгированной p-SCN-Bn-DOTA/HuM95 в хелатообразующей реакционной смеси для получения Ас-225 радиоиммуноконъюгата.

Изобретение относится к медицине, лучевой диагностике. Для визуализации интересующего отдела мочевыводящих путей используют рентгеновскую и сцинтиграфическую технологии получения изображения, для чего используют гибридную ОФЭКТ-КТ-диагностическую систему с введением рентгеноконтрастного и радиофармацевтических препаратов с интервалом между введениями от 30 секунд до 1 минуты.

Изобретение относится к области радиофармацевтики и представляет собой способ получения термочувствительного йодсодержащего радиофармпрепарата (РФП) с радиохимической чистотой 95-98%, заключающийся в ковалентном присоединении изотопов радиоактивного йода к тирозиновым группам, включенным в цепь поли-N-изопропилакриламида, с последующим отделением меченой полимерной компоненты от низкомолекулярных соединений на хроматографической гелевой колонке путем элюирования водой, отличающийся тем, что в качестве подвижной фазы используются водные растворы химических соединений, преимущественно неорганических солей, обладающих коэффициентом дестабилизации полимер-гидрат-йодидных комплексов γ = − d T f t d C s из интервала γ=30-60 град·л/моль, где Tft - температура фазового перехода в растворе, содержащем дестабилизирующую добавку, Cs - концентрация добавки, ограниченная сверху условием γ ⋅ C s < T f t 0 − T к (T f t 0 = T f t , при Cs=0, Tк - температура в колонке).

Изобретение относится к медицине, медицинской радиологии и может быть применено для оценки всасывательной функции тонкой кишки с использованием динамической абсорбционной энтеросцинтиграфии с зондовым способом введения 99mTc-пертехнетата.

Изобретение относится к медицине, онкологии и может применяться для ранней диагностики опухолей позвонков. Проводят трехступенчатую диагностику всем больным с опухолевыми заболеваниями различной локализации.

Изобретение относится к технике для ядерной медицины, в частности к изготовлению изотопных генераторов. Генератор рубидия-82 включает защитный от ионизирующего излучения корпус, внутри полости которого размещена емкость с разъемным защитным вкладышем из вольфрама или вольфрамового сплава, генераторной колонкой и подводящей и отводящей трубками, размещенными во внутренних пазах разъемного вкладыша, при этом крышка корпуса снабжена предохранительной полостью для сбора утерянной жидкости.

Изобретение относится к микрожидкостной радиофармацевтической системе. Система включает реакционный сосуд, адаптированный для приема радиоизотопа, выбранного из углерода-11 и фтора-18, и одного реагента, причем реакционный сосуд связан с источником тепла, посредством которого, когда радиоизотоп и реагент смешиваются в реакционном сосуде, к реакционному сосуду из теплового источника подводится тепло, и синтезируется радиофармацевтический раствор.

Изобретение относится к фтор-содержащим соединениям формулы III: где R3 выбирают из группы, включающей Н, F, CN и NO2; R7 выбирают из группы, включающей Y, -O(CH2)n-Y, -(OCH2CH2)m-Y, Z, -OCH2-Z; -CH2-CH2-Z, -CH=CH-Z и -C≡C-Z; X выбирают из CH или N; Y выбирают из 18F или F; Z представляет собой группу где * указывает атом присоединения Z; R5 выбирают из группы, включающей Н, CN и NO2; R8 выбирают из группы, включающей Y и -O(CH2)n-Y; n представляет собой 1-3; и m представляет собой 2-3; включая Е- и Z-изомеры и диастереомеры, их смеси, и любую фармацевтически приемлемую соль или их комплекс, а также к способам их получения, промежуточным соединениям синтеза, их применению в качестве диагностических средств, в особенности для визуализации тромбов. 9 н. и 5 з.п. ф-лы, 6 табл., 55 пр.

Группа изобретений относится к медицинской технике, а именно к средствам подачи радиофармацевтических материалов. Система измерения радиоактивной концентрации радиофармацевтического препарата содержит контейнер, связанную с ним анализируемую область, сформированную из части контейнера, детектор радиации, апертурную систему, имеющую по меньшей мере один оптический элемент, расположенный между анализируемой областью и детектором радиации, и выполненную с возможностью передачи в нее радиоактивной концентрации радионуклида в анализируемой области, устройство сбора данных, обеспечивающее измерение радиации анализируемой области, и микропроцессорную систему. Микропроцессорная система выполнена с возможностью вычисления радиоактивной концентрации, излучаемой радиофармацевтическим препаратом, находящимся в анализируемой области. Способ измерения радиоактивной концентрации радиофармацевтического препарата в системе измерения концентрации включает облучение детектора радиации радиацией, излучаемой радиофармацевтическим препаратом, сбор данных с выхода детектора радиации через электронный вход устройства сбора данных, преобразование данных в цифровое представление и передачу его в микропроцессорную систему, анализ цифрового представления и вычисление радиоактивной концентрации на основе общей величины радиации, рассчитанной по меньшей мере по одному алгоритму анализа. Использование изобретений позволяет повысить точность измерения удельной активности или радиоактивной концентрации фармацевтического препарата. 2 н. и 14 з.п. ф-лы, 7 ил.

Изобретение относится к медицине, лучевой диагностике с использованием однофотонной эмиссионной компьютерной томографии (ОФЭКТ). Определяют реабилитационный потенциал (РП) у пациента с нарушением уровня сознания, для чего проводят оценку состояния мозгового кровотока - перфузии головного мозга: вначале осуществляют внутривенное введение 99mТс-гексаметилпропиленаминоксима (99mTc-ГМПАО) в дозе 4,5-5 МБк на кг массы тела пациента, определяют методом ОФЭКТ корковую перфузию в передних, средних, задних отделах лобных долей, теменных, височных, затылочных долях обоих полушарий головного мозга и в каждом из полушарий мозжечка. Затем рассчитывают ОКП для каждой из указанных зон головного мозга, используя в качестве референтной зоны полушарие мозжечка с той же стороны, что и исследуемая зона головного мозга, и осуществляют визуальную, аудиальную, сенсорную и когнитивную нагрузку и/или фармакологическую нагрузку, в качестве которой внутривенно вводят любое лекарственное вещество, влияющее на изменение мозгового кровотока и/или мозговой активности. На фоне проводимой нагрузки внутривенно вводят дозу упомянутого РФП из расчета 9-10 МБк/кг массы тела пациента и повторно осуществляют ОФЭКТ, определяя корковую перфузию. Снова рассчитывают ОКП для каждой из исследуемых зон головного мозга и сопоставляют полученные значения регионарной перфузии в каждой из этих зон в состоянии покоя и на фоне нагрузки. При увеличении ОКП зоны мозга более чем на 10% делают заключение о наличии функциональных резервов этой зоны и высоком РП, при отсутствии увеличения ОКП зоны или увеличении ее менее чем на 10%, делают вывод о сниженном РП. Способ обеспечивает определение сохранности различных зон коры головного мозга, четкую верификацию диагноза для правильного подбора лечебных и реабилитационных мероприятий. 2 ил.

Изобретение относится к медицине, онкологии, урологии, радиологии, способам регистрации аутофлюоресценции тканей для более эффективного проведения низкодозной брахитерапии локализованных форм злокачественных новообразований предстательной железы. Проводят имплантацию под ультразвуковым контролем микрокапсул с радионуклидом I-125 чреспромежностным доступом в опухолевую ткань предстательной железы с помощью шаблона с отверстиями с шагом 5 мм. Предварительно в начале операции через отверстия шаблона вводят в ткань предстательной железы диагностический катетер для регистрации аутофлюоресценции. Определяют количество очагов аутофлюоресценции, характерной для опухолевой ткани, и их границы. С учетом этих данных определяют дозу облучения, количество микрокапсул для имплантации и характер их распределения при имплантации. Способ позволяет более точно и подробно обследовать весь объем органа, исключить возможность пропуска участков паренхимы предстательной железы при ее сложном анатомическом строении или значительных размерах, а также использовать полученные значения для прицельного распределения микроисточников и расчета необходимых доз во избежание подведения избыточного радиационного воздействия на окружающие здоровые ткани, снизить частоту развития ранних и поздних лучевых осложнений. 3 пр.

Способ относится к ядерной медицине, нейроонкологии, может быть применен при бор-нейтронозахватной терапии (БНЗТ) злокачественных опухолей. Проводят введение пациенту препарата адресной доставки бора, облучение потоком эпитепловых нейтронов и измерение гамма-спектрометром пространственного распределения интенсивности излучения гамма-квантов. Причем предварительно препарат адресной доставки маркируют стабильным атомным ядром, который под действием облучения эпитепловыми нейтронами активируется и распадается с испусканием электрона. При этом для измерения пространственного распределения поглощенной дозы рассчитывают отношение интенсивности активации стабильного атомного ядра к интенсивности поглощения нейтронов бором, используя измерение соотношений концентраций бора и ядер-мишеней для радиационного захвата нейтронов и измерение после облучения наведенной активности. Гамма-спектрометр может быть расположен вне помещения, где проводят облучение. В качестве реагента со стабильным атомным ядром, активируемым под действием эпитепловых нейтронов, используют золото или индий. Способ обеспечивает точное определение поглощенной дозы нейтронов и ее пространственного распределения в опухоли. 2 з.п. ф-лы, 1 табл.

Изобретение относится к медицине, а именно рентгенорадиологии, и может быть использовано для количественного определения накопления радиофармпрепарата (РФП) при радионуклидном исследовании перфузии легких. На сцинтиграфическое изображение легкого накладывают матрицу, соответствующую его анатомическим размерам. В каждой ячейке матрицы измеряют значение накопления радиофармпрепарата и сравнивают со значением накопления радиофармпрепарата в норме. Матрицу с полученными данными сопоставляют с топографической картой сегментов легких и выявляют нарушения перфузии по сегментам. Целесообразно, чтобы количество столбцов ячеек по ширине и количество рядов ячеек по высоте матрицы находилось в соотношении 1:2. Предпочтительно, чтобы матрица содержала пять столбцов ячеек по ширине и десять рядов ячеек по высоте. Способ обеспечивает точное количественное определение кровотока в каждом участке легкого, посегментной локализации участков гипо- и гиперперфузии легких, даже в случае поражения обоих легких, при различной бронхолегочной патологии. 2 з.п. ф-лы, 6 ил., 2 пр., 2 табл.

Изобретение относится к области органической химии и касается способа синтеза линолевой и линоленовой кислоты, меченной изотопами углерода 13С и 14С в положении 1, которая может быть использована в качестве средства для выполнения дыхательных тестов, в частности, в интересах диагностики функциональной активности органов пищеварения и гепатобиллиарной системы. Способ синтеза 13С-линолевой, 13С-линоленовой, 14С-линолевой и 14С-линоленовой кислот включает конденсацию углекислого газа, меченного 14С или 13С, с реактивом Гриньяра, получаемым из 1-бром-8,11-гептадекандиена (в случае линолевой кислоты) или из 1-бром-8,11,14-гептадекантриена (в случае линоленовой кислоты), выполняемую в следующей последовательности стадий: а - получение реактива Гриньяра реакцией металлического магния с 1-бром-8,11-гептадекандиеном (в случае линолевой кислоты) или с 1-бром-8,11,14-гептадекантриеном (в случае линоленовой кислоты) в присутствии металлического йода; b - карбоксилирование реактива Гриньяра, полученного в пункте а, в течение 5-15 мин при температуре -20°C при постоянном перемешивании, углекислым газом, меченным 14С или 13С, получаемым разложением серной кислотой карбоната бария, меченного 14С и 13С, при давлении СО2 в приборе не свыше 500 мм рт.ст. (поддерживается капельным дозированием серной кислоты); после прекращения изменения давления в системе реакционную колбу охлаждают жидким азотом с целью количественного переноса в нее оставшегося в системе 14СО2 или 13CO2, закрывают кран, соединяющий прибор с источником CO2, и перемешивают реакционную массу в течение 15 мин при температуре -20°C с целью полного включения изотопно меченного углекислого газа в продукт синтеза: линолевую или линоленовую кислоту. Технический результат изобретения состоит в ускорении процесса получения целевых продуктов, сокращении потерь углекислого газа, меченного 14С или 13С, в повышении его суммарного химического и радиационного выхода по сравнению с прототипом, а также исключению распределения изотопно-меченных атомов по всей длине углеродной цепи ацила: включение происходит только в положении 1. Упрощение и удешевление процесса получения целевого продуктов линолевой (октадекадиен-9,12-овой-1) и линоленовой (октадекатриен-9,12,15-вой-1) кислот обеспечено уменьшением длительности, повышением радиационного и химического выхода продукта по источнику изотопа по сравнению с прототипом. В результате использования изобретения практически полностью исключается выброс радиоактивных отходов во внешнюю среду, так как включение его в целевой продукт приближается к количественному. 10 табл., 2 пр., 4 ил.

Изобретение относится к медицине, онкологии и может быть использовано для дифференцированного лечения больных локализованным раком молочной железы (РМЖ). Проводят 6 циклов неоадъювантной полихимиотерапии (НАПХТ) под контролем маммосцинтиграфии (МСГ) с 99 mТс-технетрилом и при выявлении полного МСГ-ответа первичной опухоли дополнительно проводят конформное дистанционное облучение на всю молочную железу в суммарной очаговой дозе 50 Гр и внутритканевую брахитерапию источниками высокой мощности дозы на область локализации первичной опухоли в виде трех фракций по 4 Гр без хирургического удаления опухоли. При этом о полном МСГ-ответе первичной опухоли судят после 3-го цикла НАПХТ, продолжая затем еще 3 цикла НАПХТ. В остальных случаях – в отсутствие полного МСГ-ответа – по окончании 6-го цикла НАПХТ проводят хирургическое лечение с последующим послеоперационным облучением в суммарной дозе 50 Гр. Способ обеспечивает неинвазивно, нетравматично осуществить дифференцированный выбор лечения локализованного РМЖ, высокую точность отбора пациентов с полным ответом опухоли на лекарственное лечение для последующего облучения без проведения хирургической операции, обеспечивает повышение эффективности безоперационного лечения. 2 пр.

Изобретение относится к медицине, радионуклидной диагностике, касается определения выраженности и распространенности воспаления в легких и внутригрудных лимфатических узлах (ВГЛУ) у больных саркоидозом. Вводят внутривенно радиофармпрепарат (РФП) 99mTc-технетрил и проводят рентгенографическое исследование с оценкой выраженности накопления РФП и его топической локализации в легких и во ВГЛУ. Причем РФП получают перед введением таким образом: технеций-99m после элюирования вводят во флакон с лиофилизатом технетрила, помещают в свинцовый контейнер и нагревают на водяной бане в течение 15 мин с момента закипания воды при уровне воды в водяной бане выше уровня раствора препарата во флаконе, охлаждают до комнатной температуры. После введения РФП по достижении его энергетического пика выполняют гамма-сцинтиграфию и/или однофотонную эмиссионную томографию легких и ВГЛУ, определяя при этом степень выраженности и распространенности патологического процесса в легких и во ВГЛУ путем вычисления индекса поглощения РФП в очаге воспаления. Его значение от 10% до 20% выше фоновых значений считают нормой - нулевой степенью, от 21% до 30% - легкой степенью, от 31% до 40% - умеренной степенью, а свыше 41% - выраженной степенью патологического включения РФП. Способ обеспечивает высокую безопасность и оперативность диагностики, точность определения выраженности и распространенности воспалительного процесса в легких и во ВГЛУ, независимо от рентгенологических данных, объективную оценку метаболических и воспалительных процессов. 4 ил., 1 пр.

Изобретение относится к медицине, онкологии и может быть использовано для лечения анального рака с переходом на кожу. Способ включает проведение двух индукционных курсов полихимиотерапии (ПХТ) по схеме: митомицин С 10 мг/м2 внутривенно струйно в 1 и 29 дни и 5-фторурацил 1000 мг/м2 в сутки непрерывной инфузией в 1-4 дни и 29-32 дни. Через 3 недели после второго курса ПХТ проводят наружное облучение РОД 2,4 Гр ежедневно, 5 фракций в неделю до СОД 44 изоГр на первичный очаг и на регионарные лимфоузлы, сеансов облучения – 17. При этом в дни облучения на протяжении 15-и сеансов за 2 ч до начала облучения проводят сеанс сонодинамической терапии, для чего на кожу периальной зоны подводится «extempore» составленная смесь, содержащая 5 мг салфетки гидрогелевой «Колетекс СП-1» с прополисом на основе альгината натрия и 100 мг гемцитабина. После нанесения лекарственной смеси к очагу поражения подводят излучатель и проводят сеанс среднечастотного ультразвукового воздействия частотой 0,88 МГц, I=1,0 Bm/см2, время экспозиции 10 мин. В дни, свободные от облучения, сеансы сонодинамической химиотерапии не проводят, при этом всего за курс наружного облучения проводят 15 процедур сонодинамического воздействия. Общая доза гемцитабина за курс наружного облучения составляет 1500 мг. После курса облучения осуществляют перерыв в лечении на 2-3 нед. Затем проводят курс эндовагинальной брахитерапии РОД 3 Гр с ритмом облучения через день до СОД 15 Гр. В дни облучения за 2 ч до сеанса облучения проводят сеанс сонодинамической терапии. Для этого в область ануса вводят упомянутую выше «extempore» составленную смесь. Непосредственно после ее подведения к очагу поражения подводят излучатель и проводят сеанс среднечастотного ультразвукового воздействия частотой 0,88 МГц, I=1,0 Bm/см2, экспозиция 10 мин. В дни, свободные от облучения, сеансы сонодинамической химиотерапии не проводят. Всего за курс внутриполостного облучения проводят 5 процедур. Общая доза гемцитабина за курс сочетанного лучевого лечения 2000 мг, общая СОД на первичный очаг 61 изоГр. Способ обеспечивает улучшение эффективности лучевого лечения, качества жизни пациентов с местно-распространенным анальным раком с переходом на кожу, полную его регрессию. 1 пр. , 1 табл.

Группа изобретений относится к радиофармацевтическому препарату для терапии костных тканей скелета и способу получения данного радиофармпрепарата, который может быть использован для радионуклидного лечения в онкологии, а именно терапии костных поражений скелета. Способ заключается в следующем: получают стерильный раствор, состоящий из лиганда, восстановителя и антиоксиданта, в который затем вводят нерадиоактивный рений в виде перрената натрия, полученный раствор нейтрализуют, фильтруют, замораживают и лиофильно высушивают с последующим введением раствора радиоактивного рения-188 с протеканием реакции комплексообразования 188Re с лигандом. Группа изобретений позволяет проводить терапию болевого синдрома при костных метастазах. 2 н. п. ф-лы, 3 ил., 4 табл.



gastroguru © 2017