Позвоночные высокоорганизованные животные их головной мозг. Головной мозг позвоночных животных и его эволюция

§ 27. Мозг первичноводных позвоночных

Рассмотрим основные принципы строения универсальной конструкции нервной системы первичноводных позвоночных (рис. II-17; II-18). Её морфологической осью является центральная нервная система, которая расположена над позвоночником (рис. II-19, а) и включает в себя два отдела: головной и спинной мозг (см. рис. II-17, а). С головным и спинным мозгом соединены периферические нервы. Они проходят, переключаясь или не переключаясь, через ганглии и связывают периферические органы с центральной нервной системой. Периферические нервы неодинаковы; часть из них двигательные, или эффекторные. Они передают сигналы из нервной системы к органам-мишеням. Такими органами могут быть поперечнополосатая или гладкая мускулатура, эндокринные железы или секреторные клетки. У ланцетника сами мышечные клетки образовывали отростки, соединяющие их с нервной трубкой. У остальных позвоночных ситуация обратная: двигательные отростки нейронов выходят из мозга или ганглиев, достигают мышц и оканчиваются на поверхности волокон, образуя нервно-мышечные синапсы.

Другая часть периферических нервов чувствительная. Они, наоборот, передают сигналы от внутренних органов и дистантных анализаторов в головной и спинной мозг. Концевые чувствительные участки рецепторных нервов очень сильно различаются по морфологическому строению и рецепторным возможностям. Это позволяет получать дифференцированную информацию различного типа. Особую группу чувствительных клеток и волокон представляют собой дистантные рецепторные органы, или внешние органы чувств. У первичноводных позвоночных к внешним органам чувств относят обоняние, зрение, вкусовые рецепторы, органы боковой линии, рецепторы углового и линейного (гравитационного) ускорения, электрорецепторы и осязание.

Внешние органы чувств сосредоточены в головной части позвоночных, а их нервы приходят в головной мозг. В головной мозг приходит и большая часть информации от внутренних органов, мускулатуры и поверхности тела. По сути дела головной мозг является скоплением клеток, обрабатывающих информацию, поступающую от органов чувств. В соответствии с этими функциями головной мозг имеет специализированные центры, которые обслуживают несколько внешних или внутренних органов чувств. Такие центры по традиции называют отделами мозга.

В головном мозге всех позвоночных выделяют 5 специализированных отделов: передний мозг (telencephalon), промежуточный (diencephalon), средний (mesencephalon), задний мозг с мозжечком (metencephalon, cerebellum) и продолговатый мозг (metencephalon) (см. рис. II-17, б). У первичноводных позвоночных отсутствуют полушария мозжечка, а следовательно, и мост, поэтому определить анатомическую границу между задним и продолговатым мозгом невозможно. Это приводит к тому, что во многих сравнительно-анатомических работах название «задний» и «продолговатый» мозг не применяется. Вместо них используется более общее название - «ромбэнцефалон» (rhombencephalon), которое включает в себя оба отдела.

Понятно, что отсутствие преемственности в названиях не сказывается на гомологизацию этих участков мозга как у первичноводных позвоночных, так и у млекопитающих. Гомология отделов головного мозга сохраняется во всех группах позвоночных (см. рис II-18). Надо отдать должное неординарному сравнительному нейроанатому H.H. Миклухо-Маклаю. Ещё в 70-х годах XIX в. он провёл детальные исследования головного мозга различных первичноводных позвоночных и их эмбрионов. Он показал, что основные отделы мозга позвоночных гомологичны друг другу и, несмотря на все эволюционные специализации, сохраняют общность морфологического строения. Результатом многолетних трудов H.H. Миклухо-Маклая стала первая обоснованная гомологизация отделов мозга позвоночных (Миклухо-Маклай, 1952). Уже во 2-м издании сравнительной анатомии К. Гегенбаур (Gegenbaur, 1898) воспользовался этой работой и ввёл представление о нейрогомологиях отделов головного мозга в научный обиход.

Проводя морфологический анализ мозга первичноводных позвоночных, H.H. Миклухо-Маклай показал, что при изучении отделов мозга необходимо опираться как на внешнее строение, так и на морфологию внутренних полостей - мозговых желудочков. Они имеют специальные названия в каждом из отделов. В парных полушариях переднего мозга находятся первый (I) и второй (II) латеральные желудочки (см. рис. II-17, в; рис. II-20, a-в). Эти два желудочка соединены между собой межжелудочковым отверстием. Они переходят в третий (III) желудочек, который лежит внутри промежуточного и среднего мозга. В латеральных желудочках расположено непрерывное переднее сосудистое сплетение, которое распространяется примерно на 1/2 III желудочка (см. рис. II-20, а-в, д). В свою очередь он переходит в четвёртый (IV) желудочек, а последний продолжается в центральный канал спинного мозга (см. рис. II-17, б, в). Сверху IV желудочек прикрыт монослоем клеток и содержит заднее сосудистое сплетение (см. рис. II-20, к-м).

Важнейшую часть центральной нервной системы первичноводных позвоночных представляет спинной мозг. Граница между спинным и головным мозгом достаточно условна, поскольку отростки клеток из головного мозга проникают в спинной и наоборот (Nieuwenhuys, 1998). Головной мозг, как правило, расположен дорсально и окружён хрящами или костями черепной коробки. Спинной мозг лежит в полости позвоночного канала, который образован невральными дугами позвонков (см. рис. II-19, а).

У большинства позвоночных спинной мозг имеет однотипную гистологическую структуру. Тела нервных клеток (серое вещество) обычно расположены вокруг центрального канала в виде классической «бабочки», свойственной большинству амниот. У анамний картина несколько смазана, и расположение тел нейронов на разрезах спинного мозга в виде «бабочки» обычно не встречается (см. рис. II-19, а, б). Верхнюю часть серого вещества называют дорсальными (спинными) чувствующими рогами, а нижнюю - вентральными (брюшными) двигательными рогами спинного мозга. Спинные рога обычно содержат мелкие вставочные нейроны, а брюшные - крупные моторные. Через спинномозговые нервы осуществляются соматическая и висцеральная чувствительность, проходит соматически-двигательная и висцерально-двигательная иннервация.

Соматическая чувствительность включает в себя рецепцию кожных, сухожильных, связочных и мышечных сигналов. Висцеральная чувствительность включает вкусовую рецепцию и сигналы от внутренних органов. Соматически-двигательная иннервация обслуживает скелетные мышцы, а висцерально-двигательная - железы, глоточную, лицевую мимическую и челюстную мускулатуру, гладкую мускулатуру кожи, сосудов и внутренних органов. В состав спинного мозга традиционно включают ганглий дорсального корешка спинного мозга, или спинальный ганглий, в котором расположены тела афферентных (чувствительных) соматических и висцеральных нейронов (см. рис. II-19, а, б). Эти клетки связаны со спинным мозгом коротким отростком, который оканчивается в дорсальных рогах серого вещества. Вентральная часть спинного мозга составлена из эфферентных (двигательных) волокон. Они начинаются от клеток, расположенных в вентральных рогах спинного мозга (Савельев, 2001).

Не у всех позвоночных есть чёткое разделение корешков спинного мозга на моторные и сенсорные. У многих первичноводных позвоночных и амфибий висцеральные эфферентные волокна выходят из спинного мозга как через дорсальные, так и через вентральные корешки.

У ланцетника, миног и миксин висцеральные эфферентные волокна преимущественно выходят через дорсальный корешок спинного мозга. Надо отметить, что слияния дорсальных и вентральных корешков спинного мозга у ланцетника и круглоротых не происходит. Они в виде самостоятельных нервов достигают иннервируемых органов. У большинства высших позвоночных дорсальные и вентральные корешки спинного мозга выходят на одном уровне. У ланцетника, миног, миксин и акул дорсальные корешки спинного мозга чередуются с вентральными. Они лежат на разных уровнях, обозначая границы миотомов. Эфферентный соматический (моторный) корешок выходит из спинного мозга в центре миотома, а афферентные (чувствительные) и висцеральный эфферентный - в промежутках между миомерами. Таким образом, наиболее примитивными характеристиками морфологической организации спинальных нервов можно считать чередование дорсальных и вентральных корешков, их самостоятельность и висцеральные эфферентные волокна в дорсальных корешках спинного мозга.

Спинной мозг выполняет ряд автономных функций и интегрирует свою активность с головным мозгом. Эффективность этой интеграции определяется нервными связями, которые организованы в виде восходящих и нисходящих путей спинного мозга. Восходящие и нисходящие волокна спинного мозга организованы таким образом, что восходящие локализуются преимущественно в дорсальной части спинного мозга, а нисходящие

в вентральной. Восходящие пучки волокон направляются в головной мозг и оканчиваются в 5 основных центрах: мозжечке, моторных центрах заднего и продолговатого мозга, промежуточном мозге и крыше среднего мозга. Нисходящие волокна расположены преимущественно в вентральной половине спинного мозга. Основная часть нисходящих волокон спинного мозга первичноводных позвоночных начинается в заднем или среднем мозге, а оканчивается на эффекторных нейронах спинного мозга. Нисходящие волокна переходят на противоположную сторону, как и восходящие волокна. Перекрёсты образуются как на уровне продолговатого мозга, так и в непосредственной близости от нейронов-мишеней спинного мозга (см. рис. II- 19, а-в).

Спинному мозгу первичноводных позвоночных не свойственна широкая морфологическая изменчивость. Его строение сходно у различных видов, а выявленные отличия не могут служить причиной тупиковой эволюционной специализации. Это понятно из того, что спинной мозг является своеобразными рецепторноисполнительными воротами организма. Через них в мозг приходит информация о теле животного и выходят сигналы, управляющие внутренними органами и мускулатурой.

В связи с этим мозг организован предельно экономично и крайне консервативно. Достаточно упомянуть о том, что в процессе эмбриональной дифференцировки спинного мозга погибает до 85 % всех клеток, которые могут участвовать в работе этого отдела центральной нервной системы. Оставшиеся клетки успешно обеспечивают основные автономные и «воротные» функции, но ни о какой быстрой адаптивной изменчивости или морфологических перестройках речь не идёт.

Совершенно другое дело - строение головного мозга: 5 уже упомянутых отделов - передний, промежуточный, средний, задний с мозжечком и продолговатый мозг (см. рис. II-17, б) связаны с обслуживанием конкретных внешних и внутренних органов чувств. Поскольку биология первичноводных животных крайне разнообразна, морфология этих отделов широко варьирует (см. рис. II-20; рис. II-21; II-22). Изменчивость строения связана с адаптивными морфологическими перестройками основных центров головного мозга (Halpern, 1980; Foreman et аl., 1985).

Передний мозг состоит из парных полушарий и является центром, обеспечивающим анализ химических сигналов из внешней среды (см. рис. II-17; II-18). Из органов обоняния поступают рецепторные сигналы, которые обрабатываются комплексом первичных и вторичных обонятельных центров. В переднем мозге происходит классификация сигналов, идентифицируется направление на источник запаха и формируется система обменных сигналов с другими отделами головного мозга. Понятно, что в водной среде запахи распространяются не так быстро, как в воздухе, но намного дольше сохраняются в окрестностях источника, что даёт определённые преимущества. Большинство первичноводных позвоночных имеет хорошо развитые органы обоняния. Они позволяют определять расположение и движение пищевых объектов, направление миграции половых партнёров и конкурентов. В некоторых случаях органы обоняния достигают гигантских размеров. У многих пелагических акул передний мозг составляет примерно треть или даже половину переднего мозга (см. рис. II-18, б; II-21, г). Центры анализа обонятельных сигналов увеличиваются до таких размеров, что маскируют разделение полушарий (Halpern, 1980).

Остальные отделы головного мозга относительно невелики, что позволяет рассматривать длиннокрылую акулу (Carcharhinus longimanus) как пример крайней специализации. У акул есть двойная ноздря. Одна ноздря служит для входа воды, а другая - для выхода. В зависимости от биологии акул орган обоняния промывается водой или при поступательном движении, как у длиннокрылой акулы, или при латеральных покачиваниях головой, как у колючей акулы.

Анатомические особенности строения органов обоняния предопределяют способности пелагических акул к обнаружению пищи на больших расстояниях. При поступательном движении у большинства серых акул (Carcharhinidae) вода захватывается входной ноздрей, как воздухозаборником самолёта. Это обеспечивает быструю смену воды и возможность захвата пузырьков воздуха. Воздушные пузырьки могут захватываться и удерживаться в органах обоняния, если при движении со скоростью больше 1,2 м/с рострум приподнимается на 1–2 см над поверхностью воды. Пузырьки воздуха удерживаются в органах обоняния при помощи специализированных перегородок в обонятельном мешке - ламелл и снижения скорости движения животного. При задержке воздуха между ламеллами происходит растворение содержащихся в пузырьках веществ. Акулы не могут непосредственно рецептировать воздух и поэтому депонируют его в обонятельном мешке, дожидаясь повышения концентрации веществ вокруг пузырьков. Если вода не содержит привлекательных запахов, то акулы набирают скорость и выдавливают водой пузырьки воздуха, расположенные между ламелл, содержащих рецепторные клетки. Затем цикл повторяется.

Надо отметить, что площадь поверхности рецепторных ламелл органов обоняния серых акул массой 75 кг может быть больше, чем у человека, в 60–90 раз. В воздухе над поверхностью океана запахи распространяются очень быстро, что позволяет акулам эффективно находить добычу.

Следовательно, длиннокрылая акула может анализировать химические сигналы как из водной, так и из воздушной среды. Для обслуживания столь развитой обонятельной системы у серых акул сформировался гипертрофированный передний мозг, а обоняние стало ведущей системой афферентации. Если экстраполировать на человека образ мира такой акулы, то он предстанет как богатая запахами, но почти тёмная комната, она будет разделена по вертикали на мир водных и мир воздушных запахов. Через запахи будет передаваться почти вся информация, хотя кожные механорецепторы, специализированные электрорецепторные органы и весьма слабое зрение будут дополнять «обонятельную» картину мира (Halpern, 1980).

Следует отметить, что различия в строении переднего мозга проявляются как на количественном, так и на качественном уровне (см. рис. II-20, F). Если у пластиножаберных и американского чешуйчатника (Lepidosiren paradoxe) полушария переднего мозга замкнуты (см. рис. II-20, а), то у рыбы-луны передний мозг заметно эвертирован (см. рис. II-20, в). Это означает, что полушария переднего мозга как бы вывернуты желудочками наружу. Некоторые костистые рыбы и рогозуб (Neoceratodus forsterl) имеют промежуточный вариант строения полушарий, как показано на рис. II-20, б. В эвертированных полушариях переднее сосудистое сплетение лежит на верхней поверхности мозга или частично заполняет полость черепа. При обычном строении полушарий сосудистое сплетение располагается в полостях латеральных мозговых желудочков (Kappers, Huber, Grosby, 1936; Kardong, 1995).

Промежуточный мозг не связан с конкретными анализаторами, за исключением пинеального комплекса. Последний включает в себя нейроэндокринные центры и теменной фоторецептор (глаз), который воспринимает только уровень освещённости и ответствен за суточные ритмы организма.

В промежуточном мозге сосредоточены нейрогормональные центры, которые отвечают за рост, половое созревание, осмотический баланс, работу эндокринных органов, сезонную и суточную активность животного. Через промежуточный мозг осуществляются связи между передним, средним, задним и продолговатым мозгом. У первичноводных животных уровень морфологического развития промежуточного мозга является своеобразным свидетельством определённой стратегии поведения животного. Если промежуточный мозг развит столь значительно, как у рыбы-луны, то механизмы регуляции поведения преимущественно гормональные (см. рис. II-21, б).

Действительно, трудно найти среди первичноводных позвоночных животное с таким гипофизом, который лежал бы ростральнее переднего мозга, а обонятельные и зрительные нервы проходили бы над ним. У рыбы- луны гипертрофия промежуточного мозга сочетается с незначительными размерами переднего мозга и преобладанием зрительной системы. Эти животные ведут подвижную жизнь в мировом океане, им свойственна гигантская плодовитость. За один раз рыба-луна может отложить до 300 млн икринок. Рыба-луна питается зоопланктоном и практически не пользуется обонянием. Зрение ей необходимо в период размножения, когда животные собираются в большие скопления. Преобладание зрительных и гормональных центров над другими отделами мозга полностью соответствует биологии рыбы-луны. Таким образом, количественное доминирование нейроэндокринных центров промежуточного мозга над другими отделами центральной нервной системы является надёжным признаком гормонально-инстинктивного типа поведения животного (Foreman et al., 1985).

Зрительная система может стать ведущей системой афферентации у первичноводных позвоночных. В этом случае отмечается чрезвычайное развитие крыши среднего мозга - основной мозговой части зрительного анализатора. Примером такого строения мозга может быть средний мозг форели, чёрного марлина, летучей рыбы или плоскотелого саргана (см. рис. II-18, в, г, II-19, д; II-20, ж, и; II-21, а). Крыша среднего мозга образует крупные выпячивания, которые напоминают парные полушария переднего мозга, но это обманчивое впечатление исчезает, если рассмотреть III желудочек среднего мозга (см. рис. II-20, R). На сечениях видно, что реальных полушарий нет, а иллюзию создаёт симметричное латеральное расширение слоистой крыши (см. рис. II-19, д). Средний мозг у первичноводных животных является не только мозговым центром зрения. В крыше среднего мозга сосредоточены представительства боковой линии, вестибулярного аппарата и органов электрорецепции, которые хорошо развиты у многих первичноводных позвоночных. В вентральной части среднего мозга лежат преимущественно двигательные центры черепно-мозговых нервов.

У большинства первичноводных позвоночных средний мозг выполняет функции принятия генерализованных решений. Основой для такой активности служит разнообразная сенсорная информация, которая поступает в средний мозг от внешних и внутренних анализаторов. У первичноводных позвоночных основой для принятия решения являются сенсомоторная и зрительная информация, сигналы от вестибулярной системы, органов боковой линии и обонятельной системы. Только последняя не представлена прямыми связями в крыше среднего мозга. Практически все основные моторные ядра заднего и продолговатого мозга взаимодействуют с крышей среднего мозга у круглоротых, хрящевых и костистых рыб. У хрящевых и костных рыб они образуют прямые связи, идущие как от первичных моторных центров, так и от вторичных ядер, обслуживающих мозжечок. У круглоротых таких прямых связей намного меньше, чем у акул. Это связано с тем, что исторически более древним вариантом поступления сигналов в крышу среднего мозга является ретикулярный путь. По-видимому, первоначально сигналы проходили через ядра рострального края ретикулярной формации - покрышку среднего мозга, а только затем поступали в тектум. Этот путь хорошо выражен у круглоротых и представлен небольшим количеством волокон практически у всех позвоночных. Однако у акул система сенсомоторно-тектальных связей значительно изменилась. Основные моторные центры установили прямые связи с тектумом, а тегментно-тектальные моторные пути стали вспомогательными.

У первичноводных позвоночных с функциональным преобладанием зрения над другими дистантными анализаторами крыша среднего мозга стала центром принятия решений. Она стала выполнять функции, аналогичные роли ассоциативной коры переднего мозга млекопитающих. Крышу среднего мозга можно назвать ассоциативным центром с большой натяжкой. Скорее это центр тотального сравнения различных раздражителей.

Сравнительный анализ сигналов осуществляется следующим образом. Каждая из сенсорных систем, за исключением обоняния, представлена условным анализаторным слоем в крыше среднего мозга. При этом соблюдается топическая эквивалентность представительства каждого анализатора. Это означает, что информация от органов боковой линии из средней части левой стороны тела рыбы приходит примерно в то же место, куда поступают сигналы от сетчатки левого глаза. В то же место, но в другие слои крыши среднего мозга приходят сигналы от электрорецепторов и туловищной мускулатуры. Все сигналы сравниваются между собой специальными клетками, пронизывающими крышу среднего мозга по вертикали. Если один из сенсорных слоёв возбуждён больше, чем другие, то его активность становится ведущей. Самая возбуждённая сенсорная система определяет выбор одной из инстинктивных программ поведения, но при этом постоянно происходит сравнительный контроль возбуждений от других органов чувств. Если источником максимального возбуждения становится другой слой, то он приобретает приоритет в подборе инстинктивного ответа на новую ситуацию.

Такая система принятия решения очень эффективна для небольших объёмов нервной ткани с относительно пропорциональным развитием мозгового представительства органов чувств, но ожидать сложного ассоциативного поведения от животных, «думающих» крышей среднего мозга, не приходится. Скорее это самая совершенная система для выбора оптимальной последовательности инстинктивных форм поведения. У первичноводных позвоночных мозг недостаточно велик для глубокого анализа окружающего мира, а доля благоприобретённого индивидуального поведения редко превышает 5–7 %. Основой поведения является набор врождённых инстинктов, обеспечивающих как выживание, так и размножение. На нервную систему возлагается функция выбора программы поведения, наиболее адекватной для данной ситуации. Выбор осуществляется в крыше среднего мозга. Он происходит по принципу сравнения возбуждения от различных органов чувств. Наиболее возбуждённая система имеет преимущество в выборе двигательного ответа на раздражение. Она запускает инстинктивную программу поведения, которая реализуется до тех пор, пока возбуждение другой рецепторной системы не «отнимет» право выбора. Смена центра, выбирающего новую поведенческую программу, происходит практически мгновенно, чем объясняется «немотивированная» смена активности почти всех первичноводных позвоночных. Следовательно, среднемозговой центр принятия решений построен по иерархическому принципу, но с динамической возможностью мгновенного возврата на исходную позицию и смены формы поведения. Такая конструкция мозга стала идеальной для длительной эволюции позвоночных. Максимального развития эта система выбора формы поведения достигла у рептилий. Их средний мозг полностью реализовал ассоциативно-рефлекторные принципы, заложенные в эволюцию мозга первичноводных позвоночных.

Надо отметить, что у низших позвоночных крыша среднего мозга является местом принятия решения и, как следствие, источником генерализованного двигательного ответа. У первичноводных позвоночных и амфибий преобладают прямые нисходящие двигательные пути, которые оканчиваются в двигательных центрах заднего и продолговатого мозга. При помощи этих связей осуществляется контроль над моторной активностью. В другие отделы мозга нисходящие волокна из среднего мозга направляются в крайне незначительном количестве.

Иным образом организованы сенсомоторные центры заднего и продолговатого мозга. В этих отделах мозга нет специального места для интеграции различных органов чувств. Все взаимодействия между сенсорными и моторными центрами осуществляются за счёт специальных отростков нервных клеток, которые образуют своеобразную ретикулярную (сетчатую) формацию. В заднем и продолговатом мозге в самом общем виде сохраняется пространственная структура спинного мозга (см. рис. II-19, а-г). В дорсолатеральной части этого отдела сосредоточены сенсорные центры, а в медиовентральной - моторные. Эти центры получают восходящие сигналы от спинного мозга и чувствительных черепно-мозговых нервов. Нисходящие двигательные волокна управляют большей частью скелетной мускулатуры и работой внутренних органов. У большинства первичноводных позвоночных задний и продолговатый мозг образует специфическую полость, возникающую в результате эмбрионального разворачивания верхней стенки нервной трубки. Она носит название IV желудочка и соединена рострально с III желудочком, а каудально - с центральным каналом спинного мозга (см. рис. II-17; II-19). Над дорсальной поверхностью IV желудочка формируется сосудистое сплетение, которое может достигать огромного размера и располагаться над дорсальной поверхностью всего мозга. Анатомическая организация дна и полости IV желудочка отражает адаптационные особенности первичноводных позвоночных. Примером могут служить представители семейства карпозубых. У обычного карася и карпа латеральные стенки заднего мозга чрезвычайно расширены (см. рис. II-20, м; II-21, в). Более того, в этих зонах сформированы стратифицированные структуры, которые напоминают крышу среднего мозга. Однако эти гигантские образования, зачастую доминирующие в головном мозге, представляют собой не что иное, как разросшееся ядро блуждающего нерва (X). Иногда это разрастание называют вагальной долей заднего мозга. Действительно, его линейные размеры могут превышать некоторые отделы центральной нервной системы.

Понятно, что при таком преобладании в мозге представительства блуждающего нерва он и становится одним из основных центров при выборе той или иной программы поведения. Для карпа самой существенной информацией для выбора формы поведения является состояние его внутренних органов, в первую очередь пищеварительной системы. Карп оценивает эффективность действий по состоянию своего желудка, что становится решающей мотивацией в выборе конкретной поведенческой тактики.

В полости IV желудочка может быть увеличено представительство и других черепно-мозговых нервов. Примером могут служить многочисленные сомы, способные к дифференциальной соматической и вкусовой чувствительности при помощи специальных выростов на голове (усов). У них на дне IV желудочка морфологически может обособляться ядро лицевого нерва (VII). Подобное развитие соматической чувствительности приводит к столь значительному увеличению размеров этого центра, что он может визуально закрывать почти всю полость IV желудочка. К сходным последствиям приводит гипертрофированное развитие представительства языкоглоточного нерва (IX) (см. рис. II-20, л). Такое интенсивное развитие ядер языкоглоточного нерва обычно для рыб с развитой системой генерации электрических разрядов. У электрического ската центры управления электрическими органами полностью закрывают полость IV желудочка.

Однако размеры и форма мозжечка у первичноводных позвоночных могут изменяться не только в связи с пелагическим или относительно оседлым образом жизни. Поскольку мозжечок является центром анализа соматической чувствительности, он принимает самое активное участие в обработке электрорецепторных сигналов. Электрорецепцией пользуются очень многие первичноводные позвоночные. На сегодняшний день известно, что 70 видов рыб обладают развитыми электрорецепторами, а около 500 видов могут генерировать электрические разряды различной мощности. Примерно 20 видов способны как генерировать, так и рецептировать электрические поля. Наиболее изучена эта способность у гимнарха (Gymnarchus niloticus), рецептирующего электромагнитное поле, создаваемое им самим. При попадании в его поле объектов различной электропроводности гимнарх может определить направление их движения, размер и скорость. Электрорецепция используется для ухаживания друг за другом особей различного пола и подавления электромагнитных полей конкурирующих особей или других видов. Кроме гимнарха, аналогичные способности генерировать и воспринимать собственные сигналы известны у других костистых рыб, акул и скатов.

Электромагнитные сигналы первичноводные позвоночные воспринимают при помощи рецепторов двух основных типов: ампульных (ампулы Лоренцини) и клубочковых. У некоторых видов присутствуют рецепторы обоих типов, но у большинства только одного. Ампульные электрорецепторы приспособлены для восприятия медленно изменяющихся электрических полей, а клубочковые реагируют на быстрые изменения, поэтому у активно плавающих рыб, обитающих в непрозрачной воде, более развиты клубочки, а у хищников в прозрачной воде - ампульные рецепторы. Если основной системой афферентации становится электрорецепция собственного электромагнитного поля или внешних электрических полей, то мозжечок начинает выполнять роль сенсорного мозгового центра. У всех рыб, обладающих электрорецепцией, мозжечок развит чрезвычайно хорошо (см. рис. II-22, в). Зачастую полушария мозжечка так велики, что закрывают с дорсальной поверхности весь мозг.

Таким образом, структурные отделы головного мозга первичноводных позвоночных представляют собой своеобразные маркёры морфофункциональной адаптации вида к определённым условиям обитания. Анализ организации нервной системы первичноводных позвоночных даёт объективную информацию о развитии систем афферентации, способах принятия решений и ведущих мотивационных центрах головного мозга. Однако не менее интересен эволюционный путь возникновения столь компактной и эффективной системы управления поведением. Палеонтологических свидетельств возникновения современной конструкции мозга первичноводных позвоночных крайне мало. Даже самые древние находки содержат в основном информацию об уже сложившемся современном типе организации головного и спинного мозга. Реконструируя становление нервной системы первичноводных позвоночных, приходится опираться на архаические черты строения мозга современных видов.

По-видимому, появление древних хордовых не сразу привело к заметным изменениям в биологии водной среды. Судя по всему, первые хордовые были относительно небольшими животными, размером от нескольких сантиметров до полуметра. Они явно не могли составить серьёзной конкуренции процветавшим водным беспозвоночным, которые зачастую были намного больше, чем молодая группа хордовых. По размерам древние позвоночные явно проигрывали беспозвоночным и не могли на равных конкурировать с ними. Нервная система не давала особых преимуществ этой новой группе, скорее наоборот. Небольшая и хорошо детерминированная нервная система с набором эффективных поведенческих программ давала беспозвоночным заметные преимущества в конкуренции с древними хордовыми. Нервная система древних позвоночных обладала только одним положительным качеством - способностью к почти неограниченному увеличению своих размеров. Однако это преимущество было реализовано далеко не сразу. На первом этапе хордовые решали проблему конкуренции с беспозвоночными при помощи выбора среды обитания, становления строения мозга и скелета.

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Формирование общения у низших позвоночных Отмеченные закономерности не имеют конечно, значения всеобщих правил для всех позвоночных, а тем более беспозвоночных. Даже среди птиц и млекопитающих обнаруживаются многочисленные отклонения и исключения, обусловленные

Из книги Рефлекс свободы автора Павлов Иван Петрович

Ригидность и пластичность в поведении высших позвоночных Как уже указывалось, вопреки еще распространенному мнению инстинктивное поведение не теряет своей значимости в процессе эволюции, так как оно принципиально не может замещаться научением. Подчеркнем еще раз, что

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги Эволюция [Классические идеи в свете новых открытий] автора Марков Александр Владимирович

ЕСТЕСТВОЗНАНИЕ И МОЗГ[ 19 ] Можно с полным правом сказать, что неудержимый со времен Галилея ход естествознания впервые заметно приостанавливается перед высшим отделом мозга, или, общее говоря, перед органом сложнейших отношений животных к внешнему миру. И казалось, что

Из книги Удивительная палеонтология [История земли и жизни на ней] автора Еськов Кирилл Юрьевич

У кого из позвоночных самые большие глаза? Самое крупное глазное яблоко среди всех позвоночных принадлежало ихтиозавру, хотя он был далеко не самым крупным животным. Этот ящер, внешне напоминавший тунца или дельфина длиной до 15 метров, нырял в поисках пищи на глубины до 600

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Секретный код позвоночных выдал ланцетник Ланцетник (Branchiostoma) - хрестоматийный пример живого ископаемого, т. е. мало изменившегося потомка очень древнего предка. Ланцетника называют живой схемой хордового животного. Это маленькое червеобразное существо большую часть

Из книги Психопаты. Достоверный рассказ о людях без жалости, без совести, без раскаяния автора Кил Кент А.

ГЛАВА 10 Поздний палеозой - ранний мезозой: эволюция наземных позвоночных (1). Анамнии и амниоты. Две линии амниот - тероморфная и завроморфная Мы расстались с самыми первыми тетраподами (девонской ихтиостегой и родственными ей формами), когда те… Чуть было не сказал:

Из книги Антропология и концепции биологии автора

ГЛАВА 11 Поздний мезозой: эволюция наземных позвоночных (2). Завроморфный мир. Маммализация териодонтов. Динозавры и их вымирание Итак, мы знаем, что с самого момента появления истинно наземных позвоночных - амниот - произошло их разделение на две эволюционные ветви:

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

§ 12. Нервная система позвоночных Нервная система позвоночных построена на принципах вероятностного развития, дублирования, избыточности и индивидуальной изменчивости. Это не означает, что в мозге позвоночных нет места генетической детерминации развития или

Из книги автора

§ 29. Формирование мозга позвоночных Теперь попробуем предположить те события, которые могли привести к развитию описанной выше конструкции головного мозга древних первичноводных позвоночных. Жизнь в мелководной билатерали должна была иметь существенные преимущества

Из книги автора

МРТ и мозг психопата В магнитно-резонансной томографии (МРТ) используется комбинация сильных магнитных полей и радиоволн, которая создает поразительные изображения человеческой анатомии. МРТ используется с середины 1980-х, и сегодня томографы есть во всех больницах

Из книги автора

Эволюция мозга позвоночных При сравнительно-анатомическом анализе строения мозга позвоночных наибольшее впечатление производит эволюция полушарий большого мозга. Возникнув как выросты переднего мозга, исключительно в связи с обонятельной рецепцией, они становятся

Из книги автора

10.2. Мозг и психика Как связаны живая материальная система и психика? Все ли живое обладает психикой? Является ли наличие нервной системы обязательным условием проявления психического? Если да, то можно ли описать психические явления физиологическими терминами? Можно ли

Из книги автора

8.3. Основные тенденции эволюции нервной системы позвоночных Позвоночные обычно рассматриваются как подтип Vertebrata в типе хордовых (Chordata). Они представлены бесчелюстными, рыбами, амфибиями, рептилиями, птицами и млекопитающими. В систематике позвоночных много спорных

Позвоночные, или черепные

Позвоночные - высокоорганизованные хордовые животные. Им присуще активное питание. Переход к активному поиску пищи сопровождался увеличением подвижности и перестройкой двигательной системы, замещением хорды на позвоночник, развитием черепа (цефализация), вооруженного челюстями (органом захвата и измельчения пищи), появлением парных конечностей и их поясов. За счет интенсификации питания, пищеварения, дыхания и выделения повышается уровень метаболизма, усложняются строение и функции центральной нервной системы, органов чувств и гуморальной (гормональной) регуляции. Также усложняются поведение и популяционная (внутривидовая) организация животных. Большую роль в жизни позвоночных начинают играть группировки особей (семьи, стаи, колониальные поселения и т.п.), упорядочивающие использование среды, увеличивающие возможности питания, эффективность размножения и снижающие смертность. Рост уровня жизнедеятельности, совершенствование размножения и заботы о потомстве способствовали расселению позвоночных по всей поверхности Земли.

Водные позвоночные обычно имеют «рыбообразное» веретеновидное удлиненное тело, состоящее из головы, туловища и хвоста. У них развиты парные (отсутствуют у круглоротых) и непарные плавники. У наземных позвоночных форма тела более разнообразна: появляется шейный отдел, увеличивающий подвижность головы; во многих группах уменьшается хвостовой отдел; непарные плавники редуцируются, а парные превращаются в конечности рычажного типа (у китообразных и ихтиозавров - вымерших рептилий - преобразуются в плавники).

Кожа позвоночных двухслойна: наружный слой - многоядерный эпидермис, внутренний - кориум, или собственно кожа. Эпидермис развивается из эктодермы - наружного

зародышевого листка. Эпидермис содержит железистые клетки, у наземных животных часто образуются железы, погружающиеся в кориум. В нем же формируются защитные

образования: эмалевые части плакоидных чешуй, роговые чешуи пресмыкающихся, когти и перья птиц, когти и волосы млекопитающих. Кроме того, эпидермис содержит пигментные клетки, обусловливающие окраску кожи. Кориум содержит большое количество размножающихся клеток (мальпигиевый слой), за счет которых происходит восстановление нарушенных поверхностных слоев. Кориум развивается из мезодермы - среднего зародышевого листка, пронизан кровеносными сосудами и нервными окончаниями. В нем образуются костные чешуи и покровные кости и имеются пигментные клетки, участвующие в формировании яркой и специфической окраски животного. Кожа участвует в обмене веществ (водном и солевом обмене, дыхании и др.), в терморегуляции и других физиологических процессах. Главная ее роль - защита от механических повреждений и проникновения болезнетворных организмов (защитная функция).

У позвоночных наблюдается дифференциация скелета. Различают осевой скелет, череп, скелет конечностей, пояса конечностей. У бесчелюстных и хрящевых рыб скелет

состоит из хряща, а у остальных внутренний скелет преимущественно костный с некоторым количеством хряща. В эволюционном ряду позвоночных животных хорда замещается позвоночным столбом, состоящим из хрящевых или костных позвонков. Они образуются в соединительнотканной оболочке хорды. У круглоротых хорда полностью сохраняется. У большинства рыб хорда сохраняется, но опорой не служит. В остальных классах позвоночных хорда развивается лишь у зародышей, а затем вытесняется позвонками. Замещение хорды сегментарным позвоночным столбом увеличивает прочность осевого скелета при сохранении его гибкости. Верхние дуги позвонков образуют канал, в котором лежит спинной мозг. К позвонкам прикрепляются мышцы, обеспечивающие подвижность позвоночника. Зачатки парных и непарных конечностей появились еще у бесчерепных. У водных позвоночных развились парные (грудные и брюшные) и непарные (хвостовой, спинной, анальный) плавники. У наземных позвоночных парные плавники рыбообразных превратились в членистые конечности (лапы, ноги, ласты, крылья). Для их прикрепления к туловищу развились пояса конечностей - передний (или грудной) и задний (или тазовый).

Лишь у водных позвоночных имеется мускулатура метамерного строения, одного метамерность нарушается в области парных плавников и мускулатуре висцерального черепа. С переходом к наземному существованию нарушается метамерность двигательной мускулатуры: формируются лентовидные и иной формы мышцы (мускулы); возникают мускулы сгибатели и разгибатели; мускулатура конечностей частично разместились и на туловище, а собственная мускулатура туловища уменьшилась. У высших позвоночных метамерность сохранилась лишь в расположении мелких мускулов позвоночного столба. Такое расположение мускулатуры и скелета способствует значительному возрастанию подвижности и маневренности позвоночных животных.

Одновременно совершенствовалась и нервная система, развилась сложная система управления двигательными функциями организма и регуляции физиологических процессов.

Закладывающаяся на спинной стороне зародыша позвоночных нервная пластинка постепенно превращается в нервную трубку, затем она дифференцируется на головной и

спинной мозг, В ее передней части возникает небольшое вздутие, из которого последовательно образуются три мозговых пузыря: передний, средний и задний. Дальнейшая дифференцировка приводит к образованию пяти отделов головного мозга. Передняя часть переднего пузыря, разрастаясь, образует собственно передний мозг, который в последующем разделяется продольной складкой с образованием полушарий (заключенные в них полости называются боковыми желудочками). Задняя часть превращается в промежуточный мозг (в нем образуются глазные пузыри), а полость промежуточного мозга получает название третьего желудочка. На дне промежуточного мозга образуется полый вырост – воронка, к которой примыкает железа внутренней секреции – гипофиз, а на крыше промежуточного мозга возникает эпифиз. Средний пузырь превращается в средний мозг, его полость называется сильвиевым водопроводом. Передняя часть заднего пузыря образует задний мозг, или мозжечок. Он расположен сверху передней части заднего пузыря. Остальная часть заднего пузыря разрастается в продолговатый мозг, без резкой границы переходящий в спинной мозг. Полость продолговатого мозга – четвертый желудочек (ромбовидная ямка) продолжается в полость спинного мозга – невроцель. Образование пяти отделов головного мозга характерно для всех позвоночных животных, но степень их развития, детали строения и функции в разных классах имеют свои особенности. Нервные клетки позвоночных животных также в общем сходны, но имеют свои особенности. От головного мозга отходит 10-12 пар черепно-мозговых нервов. I, II, VIII пары головных нервов – только чувствующие; III, IV, VI, XI, XII – только двигательные; V, VII, IX и X – смешанные (включают чувствующие и двигательные волокна).

Продолговатый мозг без отчетливых внешних границ переходит в спинной, лежащий в канале, образованном верхними дугами позвонков. Он имеет небольшую полость – невроцель. В отличие от головного мозга, в котором белое вещество (проводящие пути,

образованные длинными отростками – аксонами нервных клеток с вкрапленными между ними опорными клетками) расположено внутри и окружено серым веществом (скопления нервных клеток с их дендритами и опорными клетками), в спинном мозге белое вещество расположено снаружи. В спинном мозге замыкаются рефлекторные дуги, независимо от головного мозга обеспечивающие элементарные безусловные рефлексы, например оборонительные. Тем не менее работа всего спинного мозга подчинена контролю головного мозга. По бокам позвоночного столба образуются цепочки ганглиев вегетативной - симпатической и парасимпатической (симпатическая нервная система состоит из ганглиев головного и крестцового отделов, парасимпатическая – из ганглиев шейного и туловищного отделов) нервной системы. Взаимосвязи центральной и вегетативной нервной системы создают возможность известной взаимозаменяемости нервных центров. Чувствующие и двигательные волокна нервов, отходящих от симпатических ганглиев, иннервируют

внутренние органы, не подчиняющиеся волевому контролю (сердце, кишечник, почки, половые и эндокринные железы и др.). Таким образом, нервная система позвоночных животных разделяется на центральную, периферическую и вегетативную (симпатическую и

парасимпатическую). Деятельность всех этих систем взаимосвязана.

Гормональная система позвоночных состоит из разнообразных желез внутренней секреции и ее сложность нарастает в эволюционном ряду. Химизм участвующих в метаболизме гормонов меняется мало, но усложняются их функции. Деятельность гормональной системы в целом находится под контролем центральной нервной системы.

Развитие и дифференцировка центральной нервной системы сопровождались возникновением и развитием органов чувств – зрения, слуха, равновесия, обоняния, вкуса, восприятия движения воды (органы боковой линии водных позвоночных) и др.

Глаза позвоночных имеют форму бокала, внутренняя полость которого заполнена студенистым стекловидным телом. Снаружи глаз покрыт роговицей, она прозрачна. Между краями бокала находится круглый или линзообразный хрусталик, способный к изменению фокусного расстояния (аккомодация). У рыб аккомодация достигается путем перемещения хрусталика, а у высших - за счет работы особых мышц глаза. Стенки глазного бокала состоят из трех оболочек: наружной сосудистой, богатой кровеносным сосудами; средней пигментной, служащей для световой изоляции глаза, и, наконец, внутренней – сетчатки, клетки которой (колбочки и палочки) способны воспринимать световые и цветовые раздражения. Спереди сосудистая оболочка глаза образует радужину, ограничивающую отверстие зрачка. Глазной бокал снаружи одет защитной капсулой – склерой. Схема строения глаз едина во всех классах позвоночных; отличия же сводятся к частным деталям строения и связанных с ними образований – век и глазных желез. У круглоротых имеются добавочные светочувствительные органы; у некоторых рыб, амфибий и пресмыкающихся имеется теменной орган.

Органы слуха позвоночных анатомически связаны с органами равновесия; они всегда парные и у разных классов имеют различное строение. Поэтому будут рассмотрении при описании групп животных.

У водных животных имеются специальные сейсмосенсорные кожные органы боковой линии, служащие в основном для восприятия слабых колебаний и токов воды. Орган

обоняния развивается как утолщение эктодермы с образованием обонятельного мешка, открывающимся наружу отверстием – ноздрей. В подавляющем большинстве органы

обоняния парные. У позвоночных, дышащих легкими, обонятельные полости соединяются с ротовой полостью внутренними ноздрями – хоанами, что позволяет им дышать, не раскрывая рта.

Органами вкуса у позвоночных служат вкусовые почки, располагающиеся у рыб в пищеводе, глотке и ротовой полости, а также на губах, усиках, иногда на плавниках и других участках тела; у остальных же они сосредоточены в ротовой полости (на языке или в начальной части глотки). В коже позвоночных располагаются рецепторы осязания, восприятия температуры, давления и др. Имеются также рецепторы, воспринимающие раздражения о состоянии внутренней среды и органов тела животного.

Пищеварительная система позвоночных существенно усложняется в связи с расширением спектра питания: наблюдается преобразование зубов и челюстного аппарата, дифференцируется и удлиняется пищеварительная трубка, подразделяющая на ротовую полость, глотку, пищевод, желудок (часто состоящий из нескольких отделов) и несколько отделов кишечника (три – четыре отдела). Печень и поджелудочная железа хорошо развиты у всех позвоночных животных. У высших рыб (хрящевые и костные ганоиды, костистые рыбы) образуется плавательный пузырь – вырост спинной части начала кишечника. Он выполняет функцию гидростатического органа и барорецептора, а иногда и добавочного органа дыхания. У бесчелюстных и рыб существуют жаберные щели; у водных челюстноротых между жаберными щелями развиваются жаберные лепестки – их совокупность образует жабры, в которых осуществляется газообмен. Жабры рыб выполняют еще

и роль добавочных органов водного и солевого обмена (поглощают и выделяют воду и ионы солей, особенно хлористого натрия); способствуют поддержанию устойчивого осмотического давления крови и тканевых жидкостей; выделяют в значительных количествах аммиак и мочевину. В качестве добавочных органов дыхания у отдельных групп рыб является кожа, плавательный пузырь и специализированные участки кишечной трубки.

Уже у многоперовых и двоякодышащих рыб из задней брюшной части глотки развиваются полые образования, напоминающие плавательный пузырь, и открывающиеся в начальной части пищевода, они функционируют как легкие.

У личинок земноводных образуются жаберные щели и внутренние и наружные жабры, редуцирующиеся во время метаморфоза и заменяемые легкими, возникающими в виде парных выростов в брюшной части глотки. У пресмыкающихся, птиц и млекопитающих на ранних стадиях зародышевого развития возникают зачатки жаберных щелей, затем они исчезают. На брюшной стороне глотки появляется непарный желоб, у конца которого возникают парные выросты, превращающиеся в легкие, а желоб превращается в трахею (воздуховод).

Полость легкого заполняется мелкими ячейками, значительно увеличивающими поверхность газообмена в легких. В зародышевом периоде у высших позвоночных в качестве основного органа дыхания функционирует зародышевый мочевой пузырь - аллантоис. После вылупления (рождения) функция дыхания переходит к легким. Интенсификации

дыхания способствует не только увеличение внутренней поверхности легких, но и образование грудной клетки, обеспечивающей интенсивное вентилирование легких.

Кровеносная система позвоночных замкнута: кровь циркулирует по системе кровеносных сосудов, имеющих эндотелиальную выстилку и гладкие мышечные волокна. В организме позвоночных функционируют три среды: внутриклеточная, внутритканевая (с межклеточной жидкостью - лимфой) и кровяное русло с кровью. Все три среды обеспечивают устойчивость организма при его пребывании в быстро меняющейся внешней среде и

сохраняют постоянство внутренней среды. У позвоночных животных есть сердце, обеспечивающее ток крови по сосудам тела. Оно возникло как расширение брюшной аорты, его стенки состоят из поперечнополосатой мускулатуры. Сердце у позвоночных бывает двухкамерным (круглоротые, рыбы), т.е. состоит из одного предсердия и одного желудочка; трехкамерным (земноводные, пресмыкающиеся), т.е. из двух предсердий и одного желудочка и четырехкамерным (птицы, млекопитающие) - из двух предсердий и двух желудочков. У некоторых позвоночных в сердце есть дополнительные отделы - венозная пазуха и артериальный конус. Самые крупные толстостенные сосуды - артерии, по ним кровь течет от сердца (от желудочка), по венам кровь движется к сердцу - в предсердие. Самые мелкие разветвления артерий переходит в мельчайшие кровеносные сосуды - капилляры, которые затем соединяются в вены.

У водных позвоночных (круглоротые, рыбы) имеется только один круг кровообращения (один круг - это одна порция крови проходит через сердце только один раз). У земноводных и пресмыкающихся - два круга кровообращения (намечаются у двоякодышащих рыб): малый (легочный) и большой, четко отделенные друг от друга, так как при трехкамерном сердце, то кровь поступает в единый (хотя иногда разделенный перегородкой) желудочек. Малый круг кровообращения начинается в желудочке, включает легкие и завершается в левом предсердии, большой круг - начинается от желудочка, затем кровь идет по

сосудам ко всем органам тела и возвращается в правое предсердие, в левое предсердие поступает артериальная кровь из легких, в правое - венозная кровь со всего тела. У земноводных в правое предсердие поступает венозная кровь с примесью артериальной, окислившейся в капиллярах кожи и ротовой полости.

При одновременном сокращении предсердий кровь поступает в желудочек, но так как перегородка неполная, то в карманах кровь частично перемешивается. Однако благодаря наличию перегородок, работе клапанов и расположению отходящих от желудочка сосудов наиболее богатая кислородом кровь поступает в голову, наиболее бедная - в легкие. Этот тип кровеносной системы считают переходным между типично водным и типично наземным типами кровеносной системы. У птиц и млекопитающих образуются полностью разделенные два круга кровообращения: малый круг кровообращения (правый желудочек - легочные артерии - легкие - легочные вены - левое предсердие) и большой круг (левый желудочек - аорта - артерии к голове, конечностям, внутренним органам - вены - правое предсердие).

Одновременно с формированием кровеносной системы у животных интенсифицируется кроветворение, появляются клеточные элементы - эритроциты и лимфоциты. Их

образование происходит в различных органах - жаберных лепестках, лимфоидной ткани кишечника, в почках, селезенке, печени. У рептилий, птиц и млекопитающих эритроциты образуются главным образом в костном мозге и менее - в селезенке и кровяном русле, а

лимфоциты - в лимфоидных участках селезенки, печени, костном мозге и в лимфатических узлах (особенно у млекопитающих). В ряду эволюции увеличивается содержание гемоглобина в эритроцитах (и их количество), а также объем крови. Депонирование крови в ряде органов (печень, селезенка, кожа и др.) позволяет быстро восстановить потери крови и увеличить объем циркулирующей крови при увеличении движений.

У позвоночных животных происходит обособление лимфатической системы. Собираемая лимфатическими капиллярами лимфа поступает в вены. Ток лимфы обеспечивается сжатием лимфатических сосудов окружающими мышцами и органами, а также пульсацией лимфатических сердец (расширение сосудов лимфатической системы). Способствует току лимфы и присасывающее действие сердца. По ходу лимфатических сосудов расположены лимфатические железы, в которых образуются лимфоциты (особенно это выражено у млекопитающих).

Выделительная система у позвоночных представлена парными почками, строение которых и протекающие в них процессы отличны у разных классов. У зародышей рыб и

земноводных сначала закладываются головные почки, имеющие характер метанефридиев. Они образованы канальцами, открывающимися одним концом, несущим воронку с мерцательным эпителием, в полость тела, а другим - в общий выводной проток. Близ воронки стенки канальца имеют утолщение из клубочков артериальных капилляров (образующийся сосудистый клубочек является предшественником боуменовой капсулы). Через воронки канальцев из полости тела удаляются излишки полостной жидкости с растворенными в ней продуктами азотистого распада, а из крови - путем фильтрации через сосудистые клубочки.

По мере развития зародышей рыб и земноводных головные почки сменяются туловищными, которые образуются позади головных. Последние потом атрофируются. Туловищные почки имеют более сложное строение, чем органы выделения беспозвоночных животных и ланцетника. Часть почечных канальцев имеют воронки, но большая часть лишена их и имеет только развитые мальпигиевы тельца (боуменовы капсулы). Возвращение в кровяное русло содержащихся в фильтрате мальпигиевых телец ценных веществ

(воды, сахаров, витаминов и др.) происходит в выводных канальцах. Изменяются и выводные протоки почек. Эмбриональные выводные протоки головных почек расщепляются вдоль на два канала – мюллеров и вольфов. Вольфов канал преобразуется в мочеточник первичной почки; мюллеров проток у самцов редуцируется, а у самок выполняет функцию яйцевода. У самцов вольфов канал выполняет также функцию семяпровода.

У пресмыкающихся, птиц и млекопитающих уже при эмбриональном развитии наблюдается развитие тазовых почек (располагаются в области таза). Канальцы вторичной, или тазовой, почки более длинны и извиты, не имеют воронок и заканчиваются мальпигиевыми тельцами (боуменовыми капсулами). Вольфов канал превращается в мочеточник (у самок вольфов канал редуцируется). Мюллеров канал самок сохраняется и функционирует как яйцевод. У самцов вольфов канал продолжает выполнять функцию семяпровода. В связи с развитием клоаки формируются совокупительные органы. У млекопитающих клоаки нет, а формируются самостоятельные мочеполовое и анальное отверстия.

Позвоночные животные, как правило, раздельнополы. Лишь среди круглоротых и рыб есть гермафродитные особи. Половые железы животных обычно парные. Яичники имеют более или менее заметное зернистое строение. Семенники отличаются гладкой

поверхностью. Для рыб и земноводных характерно наружное оплодотворение, но у хрящевых и некоторых костных рыб, хвостатых и безногих земноводных - внутреннее оплодотворение. У немногих групп позвоночных появляется яйцеживорождение (развитие яйца идет за счет питательных веществ самого яйца, но в организме матери), настоящее живорождение (развитие яйца происходит за счет питания, получаемого из организма матери, – у некоторых акуловых) или развитие яйца происходит в специальных наружных складках кожи – как у рыбы иглы, сумчатой квакши, пипы и др. Яйца имеют наружную защитную оболочку. Из яйца вылупляется личинка, ведущая водный образ жизни и похожая на взрослый организм. Особым метаморфозом отличаются личинки бесхвостых земноводных – их личинка в результате сложного метаморфоза приобретает признаки взрослого организма.

У пресмыкающихся, птиц и млекопитающих оплодотворение внутреннее. При развитии зародыш образует зародышевую оболочку – амнион, окружающую эмбрион (отсюда и название - амниоты). Между амнионом и зародышем находится околоплодная жидкость. Из заднего отдела эмбриона развивается вторая зародышевая оболочка – аллантоис (или мочевой пузырь), в котором накапливаются мочевые выделения зародыша. Наружная стенка аллантоиса богата кровеносными сосудами и выполняет функцию дыхания. У млекопитающих развивается третья зародышевая оболочка – плацента, с помощью которой зародыш прикрепляется к стенкам организма матери и получает от него питание.

Остатки плохо сохранившихся примитивных позвоночных были найдены в отложениях ордовика – нижнего силура (около 450 млн лет тому назад) и в пресных водах (согласно палеонтологическим находкам полагают, что они появились в пресных водах, примерно, на 100 млн лет раньше, чем в морских). В верхнем силуре – нижнем девоне (370-380 млн лет назад) появились панцирные, челюстножаберные, а позднее – хрящевые и костные рыбы. В среднем девоне (примерно 320 млн лет назад) от кистеперых рыб обособились земноводные (амфибии). В триасе вымерли (170-180 млн лет назад) крупные земноводные – стегоцефалы. В середине каменноугольного периода (около 250-260 млн лет назад) от земноводных обособились пресмыкающиеся (рептилии), которые господствовали на земле в течение всей мезозойской эры (более 120 млн лет назад). К концу меловогопериода (около 60 млн лет назад) вымерли многие группы пресмыкающихся, но к этому времени началось интенсивное видообразование птиц и млекопитающих. Птицы обособились от высокоорганизованных рептилий – архозавров, видимо, в конце триаса, хотя самые древние и примитивные птицы известны с юрского периода (около 135 млн лет назад). В отложениях конца мелового периода найдены представители некоторых современных отрядов позвоночных.

Млекопитающие обособились от самых древних пресмыкающихся – звероподобных рептилий – в середине каменноугольного периода. Сумчатые и планцентарные известны с юры, некоторые - с мела. Становление современных планцентарных млекопитающих проходило уже в третичном периоде мезозойской эры (примерно 60-40 млн лет назад).

Образное представление о последовательности эволюции хордовых животных можно получить, если длительный период истории уместить в один год. В таком случае

жизнь на Земле появилась в конце мая – начале июня, низшие беспозвоночные – в конце июня – начале июля, а прочие беспозвоночные и наиболее примитивные хордовые – в

конце сентября (кембрийский период мезозойской эры). В середине октября появляются первые позвоночные – примитивные бесчелюстные (конец ордовика – начало силура), а в конце октября (силур) от бесчелюстных обособляются первые челюстноротые – примитивные рыбы. В конце первой – начале второй декады ноября (средний девон) от кистеперых рыб отделяются первые земноводные; возможно в начале первой пятидневки ноября

(середина каменноугольного периода) появляются первые пресмыкающиеся, а с конца ноября – первых пять дней декабря (пермский период) начинается угасание земноводных и расцвет рептилий, продолжавшийся до конца второй декады декабря (всю мезозойскую эру). В начале триасового периода (примерно 3-4 декабря рассматриваемой шкалы) от примитивных рептилий обособились древние млекопитающие, а в конце этого же периода (7-8 декабря) от прогрессивных рептилий – архозавров – отделились древние птицы.

И лишь в конце второй декады декабря (конец мелового периода) начинается быстрое развитие птиц и млекопитающих и угасание многих групп мезозойских рептилий В

кайнозойскую эру формируются современные группы высших позвоночных. Начинается этот процесс примерно 23 декабря, а с 28 декабря (начало неогена) начинается образование многих современных семейств животных. Четвертичный период (плейстоцен) начинается примерно с 6-8 часов вечера 31 декабря – время появления первобытных (древних) видов людей и современных или близких к современным видам млекопитающих и птиц. Современный человек – Homo sapiens (человек разумный) появился примерно 100 тыс. лет назад, т.е. в предлагаемом масштабе времени – лишь в последние 20-15 минут 31 декабря, а история человеческой культуры от древнего Египта до наших дней занимает только последние 3-5 минут года!

Как правило, эволюции органического мира предшествовали перемены поверхности Земли (циклы горообразования) и климата (изменения температуры, влажности, солнечной радиации).

^ Хордовые животные

Бесчерепные или головохордовые – подтип низших хордовых животных. Голова не обособлена, череп отсутствует (отсюда название). Всё тело, включая некоторые внутренние органы, сегментировано. Органы дыхания – жабры.

Кровь движется за счёт пульсирующего брюшного сосуда. Органы чувств представлены лишь чувствующими клетками. В подтип входят два семейства (около 20 видов), представители которых обитают в умеренных и тёплых морях; наиболее известен ланцетник .

Тело ланцетовидное, прозрачное, 1,5-8 см длиной. Хорда заходит в передний отдел (отсюда название). Плавают плохо, населяют прибрежные зоны морей. Большую часть времени проводят зарывшись в песок, выставив наружу передний конец тела. В биотопах с глинистым или илистым грунтом ланцетники не зарываются, а лежат на дне. Могут совершать сезонные миграции, образуя скопления с плотностью до 1500 особей на м 2 . Отдельные виды встречаются на глубине до 30 метров. Взрослые особи питаются микропланктоном и органическими остатками. Многочисленные реснички, покрывающие глотку, создают ток воды, вместе с которой пищевые частицы попадают в рот и фильтруются жаберными щелями. В глотке имеется желоб, вырабатывающий слизь (эндостиль), которая смывает с жаберных щелей отфильтрованную пищу в кишечник. Фильтрация пищи - основная функция жаберных щелей у ланцетника. Кровеносная система замкнутая.

Под глоткой тянется брюшная аорта, выполняющая роль сердца. По ней кровь течет вперед. От этого магистрального сосуда начинаются многочисленные (около 100 пар) жаберные артерии, которые расположены в перегородках между жаберными щелями, пронизывающими боковые стенки глотки. Основания жаберных артерий пульсируют, давая дополнительный импульс крови. Через жаберные щели непрерывно процеживается вода, происходит газообмен. Обогащенную кислородом кровь жаберные артерии доставляют на спинную сторону глотки, где они впадают в корни спинной аорты. Впереди корни аорты переходят в сонные артерии, а позади впадают в спинную аорту, по которой кровь течет назад. От спинной аорты отходят артерии к различным внутренними органам и к кожным покровам, где артерии распадаются на капилляры. Из хвостовой части тела кровь собирается в хвостовую вену, впереди впадающую в подкишечную вену. Последняя собирает кровь от кишечника, распадается в печени на капилляры (воротная система), образует печеночную вену, которая несет кровь в брюшную аорту. Дыхание преимущественно кожное. Оплодотворение наружное. Яйца развиваются в толще воды. Личинки активно плавают и охотятся на микроскопический планктон. Их строение сложнее, чем у взрослых особей. Принято считать, что ланцетники - это дожившие до наших дней животные, предки современных позвоночных. Доказать это пока не удается. Некоторые исследователи полагают, что головохордовые могут являться позвоночными, вторично претерпевшими упрощение. Типичным представителем класса является встречающийся в Черном море европейский ланцетник (Amphioxus lanceolatum ). В азиатских странах ланцетник является промысловым животным с ежегодным уловом 20-30 тонн.

Позвоночные или черепные – наиболее высокоорганизованная группа животных. Основные черты позвоночных: наличие у эмбриона хорды, преобразующейся у взрослого животного в позвоночник, внутренний скелет, обособленная голова с развитым головным мозгом, защищённым черепом, совершенные органы чувств, развитые кровеносная, пищеварительная, дыхательная, выделительная и половая системы. Позвоночные размножаются исключительно половым путём; большинство из них раздельнополы, но некоторые рыбы – гермафродиты. Подтип позвоночных разделяют на два раздела: бесчелюстные, куда входят два вымерших класса, и круглоротые (современный класс), и челюстноротые, которые объединяют два надкласса: рыбы (из них два ископаемых и два современных класса) и четвероногие с четырьмя классами - земноводные, пресмыкающиеся, птицы и млекопитающие.

Бесчелюстные

Бесчелюстные включают ископаемых и современных позвоночных, у которых хорда в течение всей жизни выполняет роль основного опорного стержня тела. Они имеют сосущий ротовой аппарат без подвижных челюстей; жаберных дуг у них нет, отсутствуют и парные конечности; есть непарная ноздря, ведущая в обонятельный мешок. Современными бесчелюстными являются представители класса круглоротых – миксины и миноги.

Круглоротые


Более высоко организованные хордовые животные. Отличаются активным питанием: пища разыскивается, нередко преследуется, а после поимки часто измельчается, что облегчает переваривание. Переход к активному питанию сопровождался усилением подвижности и перестройкой двигательной системы, хотя ее принципиальная схема сохраняется. Хорда замещается позвоночником, развивается череп (защита головного мозга), вооруженный челюстями (органом захвата и измельчения пищи); возникают парные конечности и их пояса. Уровень метаболизма у позвоночных существенно повышается за счет интенсификации питания, пищеварения, дыхания, кровообращения и выделения. Существенно усложняется строение и функции центральной нервной системы, органов чувств и гуморальной (гормональной) регуляции. На этой основе усложняется поведение и популяционная (внутривидовая) организация. Растущую роль в жизни позвоночных начинают играть группировки особей (семьи, стаи, колониальные поселения и др.), упорядочивающие использование среды, увеличивающие возможности питания, эффективность размножения и снижающие смертность. Все это объясняет явную тенденцию к падению индивидуальной плодовитости в ряду позвоночных. Рост уровня жизнедеятельности, совершенствование размножения и заботы о потомстве сопровождалось расселением позвоночных по всей поверхности Земли: в морях и океанах, пресных водоемах и на суше - от тропиков до высоких широт Арктики и Антарктики.
Подтип позвоночных разделяют на два раздела (см. с. 12): бесчелюстные - Agnatha, который включает два вымерших класса, и современный класс круглоротые, и челюстноротые - Gnathostomata, которые объединяют два надкласса: рыбы -Pisces (включает два ископаемых и два современных класса) и четвероногие - Tetrapoda с четырьмя классами - земноводные, пресмыкающиеся, птицы и млекопитающие. Челюстноротые обычно подразделяются на две группы, не имеющие таксономического значения: первичноводные - Anamnia (рыбы и земноводные; последние вышли на сушу, но сохранили тесные связи с водой) и первичноназемные - Amniota (пресмыкающиеся, птицы, млекопитающие; некоторые из них вторично перешли к водному образу жизни). Наконец, различия в устойчивости метаболизма и степени стабильности внутреннего климата отличают пойкилотермных (холоднокровных или экзотермных) позвоночных - круглоротых, рыб, земноводных и пресмыкающихся - от гомойотермных (теплокровных или эндотермных) позвоночных - птиц и млекопитающих. В современной фауне к подтипу позвоночные относятся около 42 тыс. видов (Майр, 1971).

Основные черты организации позвоночных
Форма тела. Водные позвоночные обычно имеют «рыбообразное» веретеновидное удлиненное тело, подразделяемое на голову, туловище и хвост. Развиваются парные (отсутствуют у круглоротых) и непарные плавники. Форма тела наземных позвоночных более разнообразна. У них появляется шейный отдел, увеличивающий подвижность головы; во многих группах уменьшается хвостовой отдел. Непарные плавники редуцируются, а парные превращаются в рычажные конечности наземного типа, у китообразных и ихтиозавров (вымерших рептилий) преобразующиеся в плавники.
Кожные покровы. Кожа позвоночных животных двухслойна: наружный слой - многорядный эпидермис, внутренний кориум, или собственно кожа. Эпидермис развивается из наружного зародышевого листка - эктодермы - и состоит из многих рядов клеток, из которых нижний представлен энергично размножающимися клетками (мальпигиев слой), восстанавливающими нарушаемые поверхностные слои. В эпидермальном слое имеются различного назначения железистые клетки, у наземных позвоночных часто образующие многоклеточные железы, которые погружаются в слой кориума. В эпидермальном слое возникают защитные образования: эмалевые части плакоидных чешуй, роговые чешуи пресмыкающихся, когти и перья птиц, когти и волосы млекопитающих. Скопление пигмента в клетках эпидермиса обусловливает окраску кожи (хроматофорные клетки).
Кориум развивается из наружного листка миотомов зародыша, т. е. из мезодермы. Обычно он толще слоя эпидермиса и образуется путем разрастания волокнистой соединительной ткани, пронизанной кровеносными сосудами и нервными окончаниями. В этом слое возникают покровные скелетные образования: костные чешуи и покровныё кости. Скопления пигмента концентрируются в отдельных пигментных клетках и обусловливают вместе с пигментами эпителиального слоя специфичную для каждого вида окраску, подчас очень яркую и сложную (имеет важное сигнальное значение).
Помимо функции механической защиты подлежащих тканей кожа участвует в обмене веществ (водном и солевом обмене, дыхании и др.), в терморегуляции и иных физиологических процессах. Ее особо важная роль - защита организма от проникновения болезнетворных агентой с помощью механизмов фагоцитарной и биохимической природы.
Скелет. Существенно дифференцируется скелет. Он представлен осевым скелетом, черепом, скелетом конечностей’ и их поясов. У бесчелюстных и хрящевых рыб он построен разными типами хряща. Иногда хрящ импрегнируется кальциевыми солями и принимает внешне вид кости. У остальных позвоночных внутренний скелет в основном костный с некоторым участием хряща.
В эволюционном ряду позвоночных кость вначале появилась в покровных образованиях (костные шипы и щитки бесчелюстных, панцирные пластинки и костная чешуя у рыб). Она служила защитой от механических повреждений и врагов. У пресноводных обитателей костный покров уменьшал обводнение организма, грозившее наруше-

Рис. 30. Гистологическое строение хряща. А - хрящ круглоротых (межклеточное вещество слабо развито); Б - гиалиновый хрящ челюстноротых (хорошо развито межклеточное вещество) (по Румянцеву, 1958)
нием нормального осмотического давления внутренней среды. Предполагают, что в эволюции скелета исходной тканью был «слизистый хрящ», малопрочный и слабоупругий, подобно встречающемуся в скелетах личинок круглоротых. Позднее в скелетных образованиях появились упругие, эластичные и высокопрочные гиалиновые и волокнистые хрящи (рис. 30) и, наконец, возникла настоящая кость разного строения и прочности: от грубоволокнистой у рыб до тонковолокнистой пластинчатой кости со сложной остеонной организацией у рептилий, птиц и млекопитающих (А. В. Румянцев, 1958) х.
Таким образом, в ходе эволюции внутреннего скелета позвоночных соответственно среде обитания и образу жизни усложнялось и совершенствовалось не только его анатомическое строение, но и гистологическая структура материала, из которого построен скелет. На этом примере можно видеть, как эволюционные преобразования на уровне организма (анатомия) сочетаются с изменениями на клеточно-молекулярном уровне. Важно заметить, что оба ряда изменений взаимосвязаны, но и относительно независимы, т. е. не строго синхронны.
В онтогенезе позвоночных скелетные элементы возникают в волокнистой соединительной ткани (вероятно, представляющей преобразованную слизистою опорную ткань бесчелюстных) в виде хрящевых образований, которые затем могут замещаться костью (замещающие, хрящевые или хондральные кости). Другие кости образуются в соединительнотканном слое кожи сразу, не проходя хрящевой стадии, - это покровные или кожные кости. Нередко они погружаются под кожу и срастаются с хрящевыми костями. По внешнему виду или положению определить тип и происхождение кости невозможно, оно устанавливается лишь при изучении ее развития. />В эволюционном ряду позвоночных животных хорда замещается позвоночным столбом, состоящим из хрящевых или костных позвонков. Они образуются в соединительнотканной оболочке хорды. У кругло-
J Подробнее о микроструктуре костей см. в описаниях скелетов разных классов.
61

ротых хорда полностью сохраняется, но в ее соединительнотканной оболочке развиваются палочковидные хрящи, которые рассматриваются как зачатки верхних дуг позвонков. У большинства рыб хорда, в большей или меньшей степени сжатая и деформированная образовавшимися телами хрящевых или костных позвонков, все же сохраняется, но опорой не служит. В остальных классах позвоночных животных хорда развивается лишь у зародышей, а затем вытесняется позвонками. Замещение хорды сегментарным позвоночным столбом увеличивает прочность осевого скелета при сохранении его гибкости (подвижности). Сложный рельеф позвонков обеспечивает возможности прикрепления мощной мускулатуры. Верхние дуги позвонков образуют канал, в котором лежит спинной мозг.
Зачатки парных и непарных конечностей в виде примитивных стабилизаторов - метаплевральных и непарной плавниковой складок - наметились еще и у бесчерепных. У водных позвоночных на их основе развились парные (грудные и брюшные) и непарные (хвостовой, спинной, анальный) плавники с их внутренним и наружным скелетом. У наземных позвоночных парные плавники рыбообразных предков превратились в членистые конечности, в зависимости от способов передвижения приобретающие форму лап, ног, ласт или крыльев. Скелет парных конечностей крепится с помощью переднего или грудного и заднего или тазового поясов конечностей. Они по-разному соединяются с осевым скелетом, соответственно характеру движения.
Мускулатура. Позвоночный столб, скелет конечностей и их поясов служат опорой и местом прикрепления двигательной мускулатуры, мощность которой у позвоночных по сравнению с низшими хордовыми резко возрастает. У водных позвоночных двигательная мускулатура имеет метамерное строение, что обусловлено участием большей части тела в двигательном акте. Метамерность нарушается лишь в области парных плавников, где путем слияния и дифференцировки брюшных участков миомеров формируются глубокие и поверхностные мышцы плавников. Не имеет метамерного строения и мускулатура висцерального черепа, приводящая в движение челюсти и жаберный аппарат. С переходом к наземному образу жизни, в связи с опорой преимущественно на парные конечности метамерность двигательной мускулатуры существенно нарушается: участки отдельных миомеров сливаются друг с другом, образуя лентовидные и иной формы мышцы (мускулы), лежащие в нескольких сегментах тела; возникают мощные и сложные мускульные комплексы сгибателей и разгибателей. При этом возрастает масса мускулатуры конечностей, которая частично размещается и на туловище. Одновременно собственно туловищная мускулатура уменьшается. У высших позвоночных метамерность проявляется лишь в расположении мелких мускулов позвоночного столба, части мышц брюшного пресса и межреберных мышц. Все эти изменения в скелете и мускулатуре обеспечивают значительное возрастание подвижности и маневренности позвоночных животных.
Центральная нервная система. Одновременно с совершенствованием органов движения развивалась центральная нервная система с ее периферией, управляющая сложным комплексом движений орга

низма и регулирующая его физиологические функции. Эти функции выполняются на основе анализа сигналов, воспринимаемых органами чувств. На той же базе осуществляется ориентация животного в пространстве и формирование его поведения в меняющейся среде.
Закладывающаяся на спинной стороне зародыша позвоночных нервная пластинка (рис. 31) погружается под кожу и сворачивается в трубку, передний конец которой открывается отверстием - невро- пором - наружу, а задний - ней- рокишечным каналом соединяется с полостью первичной кишки. Оба отверстия вскоре закрываются.
При замыкании трубки нервные складки образуют в ее верхней части парные боковые выросты - ганглионарные пластинки, из которых в дальнейшем образуются спинномозговые узлы, часть ганглиев головных нервов и ганглии симпатической (вегетативной) нервной системы.
Далее нервная трубка дифференцируется на головной и спинной мозг. В ее передней части возникает небольшое вздутие, из которого последовательно образуются три мозговых пузыря: передний, средний и задний (рис. 32). Дальнейшая дифференцировка приводит к образованию пяти отделов головного мозга. Передняя часть переднего пузыря, разрастаясь, дает собственно передний мозг (telencephalon), который у большинства позвоночных, разделяясь продольной складкой, образует обособленные полушария мозга; заключенные в них полости называются боковыми желудочками. Задняя часть переднего пузыря превращается в промежуточный мозг (diencephalon), образующий парные боковые выпячивания - глазные пузыри, из которых в дальнейшем формируются сетчатка и пигментная оболочка глаза (см. ниже); полость промежуточного мозга получает название третьего желудочка. Средний пузырь превращается в средний мозг (mesencephalon), а его полость называется сильвиевым водопроводом. Передняя часть заднего пузыря образует выступающий вверх задний мозг, или мозжечок (cerebellum). Остальная часть заднего пузыря разрастается в продолговатый мозг (myelencephalon), без резкой границы переходящий в спинной мозг. Полость продолговатого мозга - четвертый желудочек, или ромбовидная ямка, - продолжается в полость спинного мозга - невроцель. Эти пять отделов головного мозга характерны для всех позвоночных животных, но степень их развития, детали строения и функции существенно отличаются в разных классах.
Нервные клетки позвоночных в общем сходны с нейронами других животных, но имеют свои особенности; их тела и короткие отростки - дендриты - составляют серое вещество мозга, а длинные отростки нервных клеток - аксоны, или невриты, окруженные неврилеммой


18
Рис. 32. Схема развития головного мозга позвоночных (по Паркеру, с изменен.): I - первая стадия (сбоку); II - вторая стадия (сбоку); III - развитый мозг с неразделенным передним мозгом; IV - то же, сагиттальный разрез; V - головной мозг с парными полушариями; VI - то же, сагиттальный разрез; VII - то же, сверху (правая сторона переднего и среднего мозга вскрыты):
/ - передний мозг, 2 - средний мозг, 3 - задний мозг, 4 - спиниой мозг, 5 - промежуточный мозг, 6 - мозжечок, 7 - продолговатый мозг, 8 - обонятельная доля, 9 - гипофиз, 10 - париетальный орган, II - эпифиз, 12 - желудочек переднего мозга, 13 - зрительный бугор, 14 - третий желудочек, 15 - желудочек среднего мозга, 16 - желудочек мрзжечка, 17 - четвертый желудочек, 18 - полушарие переднего мозга, 19 - канал спинного мозга, 20 - желудочек обонятельной доли, 21 - правый боковой желудочек, 22 - полосатое тело, 23 - зрительная доля (двухолмие)

(шванновскими клетками) и миэлиновой оболочкой, образуют белое вещество (рис. 33). Оболочка изолирует нервные волокна, обеспечивая независимость проведения импульса (подобно изоляции электрических проводов). В организме позвоночного животного, где одновременно получается, передается и обрабатывается огромное количество разнообразной информации, подобное усложнение нервных путей необходимо.
Основная масса серого вещества переднего мозга расположена в виде полосатых тел на дне и в его парных выпячиваниях - обонятельных долях. От каждой обонятельной доли отходит обонятельный тракт, образующий у обонятельной капсулы расширение - луковицу. Короткий обонятельный нерв (nervus olfactorius) (I пара головных нервов) состоит из чувствующих волокон, связывающих клетки эпителия обонятельной капсулы с луковицей. Тонкий слой серого вещества выстилает стенки полостей желудочков. Верх переднего мозга - мантия - у большинства низших позвоночных образован только белым веществом; лишь у двоякодышащих рыб и земноводных в ее поверхностном слое появляется небольшое число нервных клеток. У пресмыкающихся в мантии имеется серое вещество (скопление нервных клеток), представляющее зачаток коры больших полушарий. У птиц



Ill


Рис. 33. Три типа нейронов (Л) н этапы формирования оболочек аксона (Б) (по Гриффину и Новику, 1973): I-двигательный нейрон (мотонейрон); II - чувствительный (рецепторный) нейрон; III - нейрон центральной
нервной системы:

/ - деидриты, 2 - тело клетки, 3 - ядро, 4 - цитоплазма, 5 - аксои, 6 - шваииовская клетка, 7 - окончания аксона, 8 - аксои, 9 - шпаниовская клетка, 10 - оболочка аксона и шваиновской клетки, 11 - щель, 12 - собственная оболочка аксона, 13 - цитоплазма шваиновской клетки
объем переднего мозга резко возрастает, но сохраняется тот же тип строения, что и у пресмыкающихся. У млекопитающих величина переднего мозга увеличивается не столько за счет разрастания полосатых тел, сколько путем развития серого вещества на поверхности мантии. Этот слой нервных клеток, функционирующий как высший ассоциативный центр, называют корой больших полушарий. Его подразделяют на первичную кору, или гиппокамп (archipallium, seu hipocampus) - разрастание образовавшегося у пресмыкающихся зачатка коры, и на вторичную кору (neopallium). На ней образуются Наумов Н. П. н Др., ч. 1
борозды (извилины), за счет которых возрастает наружная поверхность коры.
Утолщенные стенки промежуточного мозга называют зрительными буграми (thalami optici) (см. рис. 32,13)\ выросты их стенок образуют зрительные нервы (п. optici) (II пара головных нервов), имеющие хиазму (перекрест): часть волокон нерва правой стороны уходит в левый нерв, а часть волокон слева переходит в правый нерв. Зрительные нервы иннервируют только сетчатку глаза. Позади хиазмы на дне промежуточного мозга образуется полый вырост - воронка (infundibulum), к передней стенке которого примыкает железа внутренней секреции - гипофиз (hypophysis) (см. рис. 32, 9). На тонкой крыше промежуточного мозга развиваются два пузыревидных образования: передний называется теменным или париетальным органом, а задний - пинеальным органом или эпифизом (epyphysis) (см. рис. 32, 10, 11). У круглоротых оба образования выполняют роль светочувствительных органов; оба несут и секреторную функцию. У остальных позвоночных животных эпифиз функционирует только как железа внутренней секреции. Теменной (париентальный) орган сохраняется у некоторых рыб, земноводных и у части пресмыкающихся как светочувствительный орган; у остальных позвоночных исчезает.
Крыша среднего мозга приподнята парными зрительными долями (lobi optici) и образует двухолмие (см. рис. 32, 23)\ у млекопитающих оно превращается в четверохолмие. Здесь в сером веществе заканчиваются волокна зрительного тракта. Начиная с двоякодышащих рыб и земноводных, значение среднего мозга как зрительного центра уменьшается. От него отходят две пары головных нервов, иннервирующих мышцы глаз: глазодвигательный нерв (n. oculomotorius) (III пара) и блоковый (п. trochlearis) (IV пара, рис. 34).
У круглоротых, части рыб и земноводных задний мозг имеет вид небольшой складки - мозжечка (см. рис. 32, 6), ограничивающей спереди крышу четвертого желудочка. У хрящевых рыб он разрастается, прикрывая заднюю часть среднего и переднюю часть продолговатого мозга. У пресмыкающихся и особенно у птиц и млекопитающих размеры мозжечка еще более возрастают, а поверхность его коры, образованной серым веществом, увеличивается благодаря образованию глубоких и сложных складок. Мозжечок - центр координации движений и равновесия; участвует он и в регуляции тонуса мышц и других физиологических процессов.

Продолговатый мозг (см. рис. 32, 7) имеет утолщенное дно и стенки, тогда как крыша его объемистой полости - четвертого желудочка (ромбовидной ямки) - образована лишь тонким эпителием и сосудистым сплетением мягкой мозговой оболочки. Значительную массу продолговатого мозга составляет белое вещество (в том числе и волокна, приходящие сюда из спинного мозга); его разрастания по дну мозга образуют так называемые пирамиды. Серое вещество располагается в верхней части дна и стенок продолговатого мозга; от него отходят V-X (у млекопитающих V-XII) пары головных нервов (рис. 34).
V пара - тройничный нерв (n. trigeminus) берет начало от боковой поверхности продолговатого мозга и тут же разделяется на три основные ветви: глазничную, верхнечелюстную и нижнечелюстную; иннервирует зубы и мускулатуру челюстной дуги, слизистую рта и кожу передней части головы. От дна мозга отходит тонкий отводящий нерв (п. abducens) (VI пара), иннервирующий наружную прямую мышцу глаза. За тройничным нервом несколькими корешками, сливающимися в крупный ганглий, отходит VII пара - лицевой нерв (n. facialis). Он распадается на мощную глазничную (идет вместе с одноименной ветвью V нерва), щечную, небную и подъязычную ветви; лицевой нерв иннервирует кожу головы, слизистую ротовой полости и мускулатуру подъязычной дуги. Далее начинается короткий слуховой нерв (n. acus- ticus), VIII пара, иннервирующий чувствующий эпителий внутреннего уха. Языкоглоточный нерв (n. glossopharingeus), IX пара, отходит позади слухового нерва и иннервирует слизистую глотки и мускулатуру первой жаберной дуги, а у наземных позвоночных - глотку, ее мускулатуру и вкусовые тельца языка. От заднебоковой поверхности продолговатого мозга многочисленными корешками, сливающимися сразу в крупный ганглий, отходит X пара - блуждающий нерв (n. vagus), разделяющийся затем на ряд ветвей: четыре жаберных (иннервируют слизистую глотки и мускулатуру II-V жаберных дуг), внутренностную (иннервирует сердце, кишечник, плавательный пузырь, легкие), боковую (иннервирует органы боковой линии; редуцируется у наземных позвоночных). XI пара - добавочный нерв (п. accessorius) образуется из задних корешков блуждающего нерва; хорошо обособлен только у млекопитающих и слабо различим у других амниот; иннервирует мускулатуру плечевого пояса. XII пара - подъязычный нерв (n. hypoglossus) хорошо выражен только у амниот, отходит от брюшной стенки задней части продолговатого мозга к мускулатуре языка и подъязычному аппарату.
I, II, VIII пары головных нервов - только чувствующие, III, IV, VI, XI и XII - только двигательные, V, VII, IX и X - смешанные (включают чувствующие и двигательные волокна).
Без отчетливых внешних границ продолговатый мозг переходит в спинной, лежащий в канале, образованном верхними дугами позвонков. Он имеет форму плоской ленты (круглоротые) или округлого тяжа; в нем имеется небольшая полость - невроцель. Вокруг нее концентрируется серое вещество (скопление нервных клеток с их дендритами и опорных клеток); у наземных позвоночных на поперечном разрезе спинного мозга оно по своему очертанию напоминает

Рис. 35. Поперечный разрез спинного мозга. Показано образование и ветвление спинного нерва:
/ - спинной корешок. 2 - брюшной корешок, 3 - спинальный ганглий,
4 - кожа, 5 - мускулы, в - спиниая ветвь, 7 - брюшная ветвь. 8 - ветвь к внутренним органам, 9 *- симпатический ганглий, 10 - кишечник,
// - спиниой мозг
крылья бабочки (рис. 35). В отличие от головного мозга в спинном мозге белое вещество (проводящие пути, образованные длинными отростками - аксонами нервных клеток с вкрапленными между ними опорными клетками) расположено снаружи. От боковой поверхности спинного мозга метамерно отходят спинномозговые нервы. От спинного выроста (рога) серого вещества отходит спинной корешок, состоящий из чувствующих волокон (передают нервные импульсы в головной мозг); на нем образуется расширение - спинномозговой узел (нервный ганглий). От брюшного выроста (рога) серого вещества отходит брюшной корешок, состоящий только из двигательных волокон (передают импульсы двигательной мускулатуре). Спинной и брюшной корешки сливаются в спинной нерв, выходящий между верхними дугами соседних позвонков и почти сразу же распадающийся на три ветви: спинную (иннервирует кожу и мышцы спины), брюшную (идет
в боковые и брюшные стенки тела) и внутренностную (соединяется с ганглием симпатической нервной системы) и иннервирует внутренние органы). Каждая^ из них включает как двигательные (эфферентные), так и чувствующие (афферентные) волокна.
В спинном мозге замыкаются рефлекторные дуги, независимо от головного мозга обеспечивающие элементарные безусловно рефлекторные акты, как, например, оборонительные. Нейроны, связывающие правые и левые стороны каждого сегмента спинного мозга, увеличивают эти возможности. Однако работа всего спинного мозга подчинена контролю головного мозга, осуществляемому через так называемые спинальные тракты - совокупности нервных волокон, по которым передается информация в головной мозг (восходящие) или распространяются импульсы, идущие от головного к сегментам спинного мозга (нисходящие пути). У бесчелюстных (круглоротых) восходящий путь не непрерывен, а состоит из коротких волокон Роон-Боардовских клеток, связывающих между собой соседние сегменты спинного мозга; этот путь кончается в продолговатом мозге. Нисходящий путь представлен идущими по всей длине спинного мозга волокнами Маутне- ровских клеток, имеющихся в среднем и продолговатом мозге (их считают близкими к гигантским волокнам мозга ланцетника), идущим от клеток Овсянникова-Роде. У хрящевых рыб к этим путям прибавляются два восходящих: спинно-бульбарный, кончающийся в продолговатом мозге, и спинно-мезэнцефалический, идущий в средний мозг. У костных рыб связи между головным и спинным мозгом усложняются путем образования двух новых путей - восходящего спинно-мозжечкового тракта и нисходящего вестибулярно-спинального. В других классах позвоночных усложнение этих связей усиливается и сопровождается все большим подчинением работы спинного мозга контролю головного. Следует обратить внимание на то, что в большинстве случаев новые пути связей образуются при сохранении старых систем, как некоторая надстройка над ними. Существование параллельных иерархически организованных каналов связи - важное условие эффективного управления работой всех систем организма, обеспечивающее ее изменение соответственно внешним условиям.
Такая адаптивность увеличивается и вегетативной нервной системой, возникающей в результате разрастания участков ганглионарных пластинок (см. рис. 31). При этом по бокам позвоночного столба образуются цепочки ганглиев вегетативной симпатической и парасимпатической нервной системы. Длинные отростки клеток этих ганглиев направляются частично к внутренним органам (чувствующие и двигательные симпатические нервные волокна), частично входят в состав спинных корешков спинномозговых нервов. У двоякодышащих и костистых рыб и у всех наземных позвоночных ганглии вегетативной системы связаны друг с другом продольным нервным тяжом (truncus sympaticus). Соединительные ветви ганглиев обеспечивают связь центральной и вегетативной нервной системы. Чувствующие
и двигательные волокна нервов, отходящих от симпатических ганглиев, иннервируют внутренние органы, не подчиняющиеся волевому контролю (сердце, кишечник, почки, половые и эндокринные железы и др.). Показано, что вывод из строя вегетативной системы не ведет к гибели животного, но значительно снижает шансы выживания при отклонениях условий существования от нормы и при перенаселении.
Взаимосвязи центральной и вегетативной нервной системы создают возможность известной взаимозаменяемости нервных центров.
Гормональная система представлена разнообразными железами внутренней секреции. Ее сложность нарастает в эволюционном ряду позвоночных. При этом число и химизм участвующих в регуляции метаболизма гормонов в разных классах меняется мало, но существенно усложняются их функции: точнее - меняется реакция органов (тканей) на воздействие гормонов. Хорошим примером может служить пролактин из группы гонадотропных (ГТГ) гормонов гипофиза, который у млекопитающих стимулирует образование молока, функционирование желтого тела (в яичнике), влияет на придаточные железы половых органов самцов и оказывает общее воздействие на метаболизм при неспецифической стимуляции, например при стрессе. Пролактин у птиц стимулирует образование «зобного молочка» (у голубей), обусловливает поведение при насиживании яиц, вызывает образование «наседных пятен» и усиливает рост. У амфибий тот же пролактин регулирует проницаемость кожи для воды (тритоны), а у морских рыб способствует выживанию при осмотическом стрессе в пресной воде.
Деятельность отдельных звеньев гормональной системы взаимно координирована и находится под контролем центральной нервной системы; возникает сложный нейрогуморальный аппарат, координирующий все процессы в организме, включая особенности поведения и реакций на абиотические и биотические факторы внешней среды. Развитие нейрогуморального аппарата в ряду позвоночных животных приводит к становлению более сложных связей с окружающей средой и обеспечивает возрастание гомеостаза - внутренней устойчивости организма при меняющихся внешних воздействиях. Наконец, он участвует и в регуляции внутривидовых отношений и межвидовых связей в сообществе.
Органы чувств. Развитие и дифференцировка центральной нервной системы сопровождались возникновением и совершенствованием органов чувств - зрения, слуха и равновесия, обоняния, вкуса, восприятия движения воды (органы боковой линии водных позвоночных). Это улучшало возможности ориентации в пространстве, необходимость которой росла по мере увеличения подвижности животных.
Органы зрения позвоночных животных представлены парными глазами более или менее шаровидной формы, лежащими в орбитах - впадинах черепа. Слой плотной соединительной ткани или хряща образует наружную оболочку глаза - склеру (рис. 36, /). На передней поверхности глаза (перед зрачком) склера переходит в тонкую прозрачную роговицу, покрытую прозрачным эпителием. Изнутри
к склере прилегает сосудистая оболочка, обильно снабженная кровеносными сосудами1, за которой следует темная пигментная оболочка. На границе между склерой и роговицей края сосудистой и пигментной оболочек образуют кольцевую складку - радужину (рис. 36, 5), ограничивающую отверстие - зрачок, который может расширяться и сужаться благодаря присутствию в радужине радиальных и кольцевых мышечных волокон.
Насыщение радужины пигментами обеспечивает различную окраску глаза. Позади радужины образуется кольцевой валик - ресничное тело, представляющее скопление мышечных волокон, прикрепляющихся к оболочке хрусталика. Ресничное тело участвует в аккомодации глаза, изменяя форму хрусталика, и, у части наземных позвоночных, перемещая его по отношению к сетчатке. За зрачком лежит круглое или сплюснутое в двояковыпуклую линзу прозрачное тело - хрусталик (рис. 36, 7).
Внутренний слой стенки глаза - сетчатка - тесно примыкает к пигментной оболочке (рис. 36, 8). Она сложно устроена и состоит из светочувствительных (рецепторных), нервных и опорных клеток. К пигментному слою примыкает слой фоторецепторов (рис. 37, 2), наружные членики которых имеют вид палочек или колбочек (рис. 37, а и б) и содержат светочувствительный пигмент. Ядра светочувствительных клеток образуют наружный клеточный слой (рис. 37, в), а далее идет наружный сетчатый слой, где конечные разветвления чувствующих клеток контактируют с дендритами биполярных клеток. Отростки последних соприкасаются с дендритами ганглиозных клеток во внутреннем сетчатом слое (рис. 37, 5). Ганглиозные клетки (рис. 37, 6) дают длинные нервные волокна (аксоны), образующие внутренний слой сетчатки (рис. 37, 7) и далее составляющие зрительный нерв. В месте выхода зрительного нерва светочувствительный слой сетчатки редуцируется и этот участок называют «слепым пятном». В центре сетчатки обычно располагается область повышенной оптической чувствительности - желтое пятно; в его центре часто имеется углубление - ямка (см. рис. 36, 9), где плотность фоторецепторов и нервных клеток увеличена. Внутренняя полость глазного бокала (яблока) заполнена прозрачным студенистым стекловидным телом.
Движение глаза в орбите обеспечивается сокращением четырех прямых и двух косых мышц глаза, прикрепляющихся к стенкам глазницы

и склере. Вокруг глаза развивается складка кожи, которая у наземных позвоночных, начиная с амфибий, превращается в подвижное верхнее и нижнее веки. У многих позвоночных развивается еще тонкое полупрозрачное третье веко - мигательная перепонка. В области век развиваются железы, секрет которых смачивает роговицу, предохраняя ее от высыхания.
Глаза позвоночных животных закладываются на ранних стадиях зародышевого развития. Одновременно с обособлением промежуточного мозга на его стенках образуются боковые выпячивания - глазные пузыри (рис. 38, 2). По мере роста зародыша глазные пузыри отодвигаются от мозга, их ножки удлиняются и сужаются, а наружная часть стенки каждого пузыря впячивается. Образуются два глазных бокала с двойными стенками, лежащие под кожей. Эктодерма над глазными бокалами образует утолщение, которое отшнуровывается от кожи, располагается у отверстия глазного бокала и превращается в хрусталик. Внутренняя, более тол- I стая, стенка глазного бокала преобразуется в
* сетчатку, а более тонкая наружная - в пигмент
ный слой. Отверстие глазного бокала сужается. Из окружающей глазной бокал мезодермы формируются сосудистая оболочка, склера и роговица (рис. 38, 7-9); последнюю снаружи покрывает тонкий слой прозрачного эпителия - участок эктодермы.

Схема строения глаза едина во всех классах позвоночных животных. Отличия сводятся к частным деталям строения и связанных с ним образований - век, глазных желез. Уже указывалось на существование у круглоротых добавочных светочувствительных органов: париетального (теменного) и пинеального (эпифиз). У части рыб, некоторых амфибий и пресмыкающихся имеется теменной орган, принимающий глазоподобное строение: утолщенная передняя стенка образует хрусталик, задняя стенка пигментирована и содержит светочувствительные клетки, палочковидные окончания которых (в отличие от настоящего глаза) направлены к внутренней полости теменного органа; под светочувствительными клетками в слое нервных волокон лежат гангоиозные клетки, отростки которых образуют нерв, идущий в крышу промежуточного мозга.
Органы слуха анатомически связаны с органами равновесия; у позвоночных животных они всегда парные (правое и левое «ухо»).



Рис. 38. Последовательные стадии развития глаза (I-IV - схема) (по Шмаль-
гаузену):
1 - промежуточный мозг, 2 - глазной пузырь, 3 - ножка глазного пузыря, 4 - хрусталик, 5 -» сетчатка, 6 - пигментный слой, 7 - сосудистая оболочка, 8 - склера, 9 - роговица
alt="" />У водных позвоночных такой комплексный орган образован капсулами внутреннего уха, закладывающимися по бокам головы зародыша в виде парных утолщений эктодермы (рис. 39). Каждая из них превращается сначала в ямку, а затем в пузырек, сообщающийся с поверхностью каналом, и позднее отшнуровывающийся от эктодермы. Слуховой пузырек перехватом разделяется на два отдела: из верхнего формируется овальный мешочек и соединенные с ним три полукружных канала (рис. 39, 2-4), лежащие в трех взаимно перпендикулярных плоскостях, - орган равновесия (вестибулярный аппарат); нижний отдел превращается в круглый мешочек (рис. 39, 5), от которого отходит полый выступ - лагена, у высших позвоночных образующий спирально завитой канал (улитку) - орган слуха. С круглым мешоч-


Рис. 39. Схема развития внутреннего уха позвоночных животных. /-VII - последовательные стадии (по Шмальгаузену):

1 - овальный мешочек, 2-4 - полукружные каналы, б - круглый мешочек, S - эндолнм- фатнческий канал, 7 - полый выступ круглого мешочка - лагеиа, 8 - слуховые чувствительные поля, 9 - отолиты

ком связан длинный, обычно замкнутый, эндолимфатический канал - остаток соединения полости первичного слухового пузырька с внешней средой.
Эпителий, выстилающий перепончатый лабиринт, на некоторых участказКкруглого и овального мешочка и в полукружных каналах имеет чувствующие клетки, снабженные упругими волосками, вдающимися в просвет внутренней полости; основания грушевидных чувствующих клеток оплетаются разветвлениями конца слухового нерва. Внутренняя полость перепончатого лабиринта заполнена эндолимфой, в которой взвешены мелкие кристаллики извести - отоконии, иногда сливающиеся в крупные образования (отолиты костистых рыб). Всякое изменение положения головы вызывает перемещение эндолимфы и отокониев, раздражающих при этом чувствующие клетки. Перепончатый лабиринт, таким образом, функционирует как орган равновесия. Звуковые волны, вызывающие колебания эндолимфы и находящихся в ней включений, также вызывают раздражение чувствующих клеток. Однако слуховую функцию у рыб несут чувствующие поля полого выроста круглого мешочка. У наземных позвоночных его размеры заметно увеличиваются, и в образовавшейся таким путем улитке происходит усложнение воспринимающего аппарата за счет разрастания чувствующих клеток и добавочных мембран. Наряду с усложнением воспринимающего аппарата внутреннего уха у наземных позвоночных образуется среднее ухо, снабженное барабанной перепонкой и слуховыми косточками, а затем формируется и наружное ухо (хорошо развито у млекопитающих). Эти преобразования обеспечивают возможность слуха в воздушной среде, отличающейся более слабой звукопроводимостью. Часть лабиринта, функционирующая в качестве органа равновесия (овальный мешочек, полукружные
каналы), у всех позвоночных сохраняется примерно на одном уровне
развития; лишь у круглоротых он, видимо, вторично упрощен.
У водных позвоночных имеются специальные сейсмосенсорные кожные органы боковой линии. Они служат преимущественно для восприятия слабых колебанийтоков воды. У круглоротых и живущих в воде амфибий эти органы представляют собой лежащие на
поверхности или в мелких ямках утолщения небольших участков эктодермы, в

которых среди опорных клеток лежат грушевидные чувствующие клетки (рис. 40): их выдающиеся над поверхностью части снабжены щетинками (жгутиками), а основания оплетены концевыми окончаниями боковой ветви блуждающего нерва. Эти органы располагаются в один - три продольных ряда на боковой поверхности тела и в несколько рядов, иногда в виде Рис. 40. Разрез органа бо- сложной сети - на голове. У рыб в толще к°в°й =гаамфибии (по кожи образуются каналы, открывающиеся
наружу специальными отверстиями; у ко-
I - опорные клетки, 2 - чув- ^ г J
ствующие клетки, 3 - нерв СТИСТЫХ рыб ЭТИ ОТВерСТИЯ прОНИЗЫ
вают чешуи и покровные кости. На стенках каналов располагаются отдельные рецепторы боковой линии (рис.41,4), имеющие описанное строение.

У рыб встречаются и отдельные органы боковой линии, лежащие на поверхности кожи. Улавливая органами боковой линии слабые токи воды, водные позвоночные могут ориентироваться в течениях, а воспринимая волны, идущие от плывущих животных или отраженные волны собственного перемещения, могут обнаруживать приближение хищника или добычи, плыть, не натыкаясь в темноте на подводные предметы. У наземных позвоночных органы боковой линии исчезают.
Орган обоняния развивается как утолщение эктодермы, которое затем погружается в кожу, образуя обонятельный мешок, открывающийся наружу отверстием - ноздрей. Эпителий обонятельного мешка состоит из опорных и удлиненных чувствующих клеток. Выходящие на поверхность эпителия концы чувствующих клеток несут пучок волосков, а проксимальные концы их соединяются с волокнами обонятельного нерва. У круглоротых парные вначале обонятельные мешки срастаются в один мешок, открывающийся наружу одной ноздрей. У остальных позвоночных органы обоняния парные. У некоторых рыб каждая ноздря разделяется кожистой перемычкой на два отверстия - через одно вода поступает в обонятельный мешок, а через

второе выводится наружу. Образование складок на стенках обонятельного мешка увеличивает поверхность чувствующего эпителия. У двоякодышащих и кистеперых рыб полость обонятельного мешка через ноздрю открывается наружу, а через внутреннюю ноздрю или хоану сообщается с ротовой полостью.
alt="" />Переход к воздушному дыханию и выход на сушу сопровождался превращением обонятельного тракта в дыхательно-обонятельный: воздух через наружные ноздри проходит в обонятельный мешок и через хоаны поступает в ротовую полость, гортань и легкие. В связи с этим уже у амфибий обонятельный мешок начинает подразделяться на дыхательный, или респираторный (выст
лан простым эпителием), и обонятельный, или ольфакторный (выстлан чувствующим эпителием) отделы. В обонятельном отделе обычно появляются складки, увеличивающие его поверхность. Еще отчетливее дифференцировка у настоящих наземных позвоночных (рис. 42). Особенно сложно строение обонятельного отдела у млекопитающих, у которых развиваются ажурные переплетения решетчатой кости, образующей костные обонятельные раковины с очень большой общей поверхностью, выстланной обонятельным эпителием.
Органами вкуса у позвоночных служат вкусовые почки, представляющие скопления чувствующих и опорных клеток. Основания чувствующих клеток оплетаются концевыми окончаниями нервов (лицевого, а у млекопитающих еще и языкоглоточного). Вкусовые почки у рыб есть в иищеводе, глотке и ротовой полости, а также на губах, усиках, иногда на плавниках и других участках тела, у остальных позвоночных они сосредоточены в ротовой области (преимущественно на языке и иногда в начальной части глотки).
Восприятие тактильных, химических, электрических (электромагнитных), температурных и других раздражений обеспечивается наличием свободных окончаний чувствующих нервов по всей поверхности кожи. В некоторых случаях они представляют специальные органы (электрорецепторы хрящевых рыб, см. ниже) или входят в состав системы органов боковой линии. Простое строение (свободные нервные окончания) имеют и так называемые интерорецепторы, собирающие информацию о состоянии внутренней среды и органов тела животного - химизме, температуре, осмотическом состоянии и других показателях. Информация от органов чувств (экстерорецеп- ция) и интерорецепторов поступает в соответственные отделы головного мозга, регулирующие физиологические параметры и поведение животного.
Скелет черепа. Развитие головного мозга и связанных с ним сложно устроенных органов чувств требовало образования защитных скелетных образований. Эту функцию выполняет мозговой или осевой череп. С другой стороны, переход к активному питанию подвижными пищевыми объектами должен был сопровождаться образованием органов активного захвата и переработки пищи. Это обеспечено формированием висцерального скелета, окружающего передний конец пищеварительной трубки; у водных позвоночных он служит и опорой жабр. Висцеральный и мозговой череп у всех позвоночных животных, кроме круглоротых, объединяется в единый комплекс - череп (cranium), подразделяемый на мозговой и висцеральный отделы.
Мозговой череп (neurocranium) закладывается под головным мозгом в виде двух-трех пар хрящей (рис. 43). По бокам переднего конца хорды образуются парахордалии (слившиеся зачатки верхних дуг передних позвонков), а впереди них - маленькие боковые хрящи (развиваются не всегда) и крупные трабекулы. Одновременно, но независимо от этих зачатков возникают хрящевые капсулы органов чувств: обонятельные, слуховые и склера глазных яблок. Парахордалии, трабекулы и боковые хрящи, разрастаясь, сливаются друг с другом, и начинают обрастать головной мозг с боков. К этой хряще
вой основе спереди прирастают обонятельные капсулы, а по бокам сзади - слуховые капсулы. Между ними на боковых поверхностях черепа образуются углубления - глазницы, в которых размещаются глаза. Такая стадия развития мозгового черепа, еще лишенного крыши, присуща круглоротым. У остальных позвоночных еще на личиночной или зародышевой стадии разросшийся хрящ образует н крышу черепа, в которой обычно остаются -небольшие отверстия -фонтанели, затянутые соединительнотканными перепонками. У низших костных рыб (хрящевых ганоидов) мозговой череп остается хрящевым, а поверх него образуется панцирь из покровных (кожных) костей. У остальных групп костных рыб в первичном хрящевом мозговом черепе возникают окостенения, завершающиеся образованием так называемых первичных, или хрящевых, костей. Одновременно покровные кости погружаются под кожу и вступают в соединение с хрящевыми костями. По внешнему виду и гистологическому строению покровные и хрящевые кости очень похожи; различить их можно лишь проследив развитие. У костистых рыб мозговой череп состоит из большого числа хрящевых и покровных костей; хрящ сохраняется только в области обонятельных и слуховых капсул и глазниц. У современных амфибий в мозговом черепе остаются значительные участки хряща и развивается относительно небольшое число хрящевых и покровных костей. У рептилий, птиц и млекопитающих мозговой череп во взрослом состоянии образован лишь костями (хрящевыми и покровными).


Различают два основных типа мозгового (осевого) черепа: 1) плати- базальный - с широким основанием; между его глазницами расположена мозговая полость черепа (рис. 44, А) - свойствен многим группам рыб, амфибий, части рептилий; 2) тропибазальный - с узким основанием; стенки глазниц сближены и разделены лишь тонкой меж- глазничной перегородкой; мозговая полость расположена позади глазниц (рис. 44, Б).
Висцеральный отдел черепа (splanchnocranium) развивается независимо от мозгового черепа в виде висцеральных (жаберных) дуг, лежащих в перегородках между жаберными щелями. У круглоротых эти хрящевые зачатки преобразуются в сложную хрящевую жаберную коробку (окружает область жаберных мешков), в околосердечный хрящ и в хрящи, поддерживающие мускулатуру языка и ротовой воронки. У водных челюстноротых позвоночных животных рудименты
первых двух жаберных дуг образуют губные хрящи (развиты у акуловых рыб). Третья висцеральная дуга, которую называют челюстной, расчленяется на два отдела, образуя собственно челюсти: верхний элемент называют небно-квадратным хрящом (palatoquad- ratum), нижний - меккелевым хрящом (carti- lago meckeli). Эти элементы выполняют функцию челюстей только у низших рыб. У высших рыб они окостеневают и лишь частично участвуют в удержании добычи; основная функция захвата добычи переходит к вторичным челюстям, т. е. к покровным, по происхождению, костям: верхнечелюстной (maxil- lare) и предчелюстной (praemaxillare) - в верхней челюсти; зубной (dentale) - в нижней челюсти. Вторичные челюсти связаны с костями, возникшими в результате окостенения первичных хрящевых челюстей.
Следующая висцеральная дуга, подъязычная, обычно состоит из двух крупных парных хрящевых элементов: гиомандибулярного, или подвеска (hyomandibulare), и гиоида, или подъязычного (hyoideum). Гиоиды правой и левой сторон соединяются друг с другом при помощи небольшого непарного элемента - копулы (copulae); у высших рыб подъязычная дуга окостеневает. Остальные дуги служат опорой жабр (жаберные дуги) и обычно состоят из четырех подвижно сочлененных друг с другом парных элементов; правая и левая половина каждой дуги соединяется друг с другом на брюшной стороне при помощи непарного элемента. У примитивных рыб число дуг может достигать 7 пар, у большинства хрящевых рыб - 5 пар хрящевых жаберных дуг, у костистых рыб часто их 4 пары (V-рудиментарна) и они окостеневают. За счет покровных костей у костных рыб формируется скелет жаберной крышки, тоже относящийся к висцеральному черепу.
Различают несколько типов прикрепления челюстного аппарата к мозговому черепу. 1. Протостилия - челюстная и подъязычная дуги независимо друг от друга связками подвешивались к мозговому черепу. Этот гипотетический исходный тип черепа, вероятно, был свойствен примитивным челюстноротым. 2. Гиостилия - верхний конец гиомандибулярного отдела подъязычной дуги прикрепляется к слуховому отделу мозгового черепа и служит подвеском для челюстной дуги (многие группы рыб, в том числе большинство хрящевых и все костистые рыбы). 3. Амфистилия - верхний элемент челюстной дуги соединяется с мозговым черепом при помощи одного-двух специальных отростков и, кроме этого, как и при гиостилии, задние концы обоих челюстных элементов прочно связаны с нижним концом гиомандибулярного элемента (некоторые примитивные и современные акулы, костные ганоиды). 4. Аутостилия - верхний элемент челюстной дуги соединяется или срастается с мозговым черепом, гиомандибуляр- ный элемент подъязычной дуги в прикреплении челюстей не участвует, и подъязычная дуга в большей или меньшей степени подвергается
редукции (цельноголовые и двоякодышащие рыбы, земноводные и все другие наземные позвоночные).
С переходом к воздушному дыханию висцеральный скелет видоизменяется. В ряду земноводные - млекопитающие происходит усиление вторичных челюстей, а развитие аутостилии приводит к редукции подъязычной дуги: нижний ее элемент вместе с редуцирующими жаберными дугами участвует в образовании подъязычного аппарата и скелета гортани, а верхний элемент - гиомандибулярный, или подвесок, - превращается в косточку среднего уха - стремечко. Скелет жаберной крышки полностью редуцируется.
Пищеварительная система существенно усложняется. У древних бесчелюстных рот сосущий, у современных круглоротых развивается присасывательная воронка и аппарат всасывания крови и лизирован- ных тканей жертвы (особенно у миксии). У челюстноротых образование вооруженных зубами челюстей обеспечило возможность захвата, удержания, а у некоторых и механической обработки пищи. Дифференцируется жевательная мускулатура, управляющая движением челюстей. Преобразования зубов и челюстного аппарата (включая жевательную мускулатуру) сопровождались расширением спектра питания. Отчетливо проявляется процесс дифференцировки и удлинения пищеварительной трубки, разделяющейся на ротовую полость, глотку, пищевод, желудок и несколько отделов кишечника.
На дне ротовой полости имеется язык с собственной мускулатурой и скелетом (подъязычный аппарат); у рыб он представляет лишь складку слизистой оболочки. В слизистой языка и всей ротовой полости рассеяны вкусовые и осязательные тельца. Начиная с амфибий в ротовой полости появляются слюнные железы. Их секрет - слюна - увлажняет слизистую рта, предохраняя ее от высыхания, и смачивает пищу, облегчая ее проглатывание. У змей отдельные слюнные железы преобразуются в ядовитые железы. Липкая слюна некоторых амфибий, рептилий, птиц и млекопитающих обеспечивает прилипание к языку мелкой подвижной добычи. У млекопитающих слюна содержит и пищеварительный фермент птиалин (амилазу), расщепляющий углеводы (крахмал).
Глотка у водных позвоночных животных пронизана жаберными щелями; у наземных позвоночных с глоткой связаны легкие. За глоткой идет пищевод - тонкая, растяжимая трубка, без резкой границы переходящая в желудок. Последний представляет расширение кишечной трубки, с более или менее развитой мускулатурой стенок; это обеспечивает перемешивание, а у некоторых групп, особенно птиц, и перетирание пищи. В слизистой желудка расположены трубчатые пищеварительные железы, выделяющие имеющий кислую реакцию желудочный сок. В его составе преобладает пепсин, но входят и ферменты химозин и липаза. Размеры, форма и детали строения желудка во всех классах позвоночных варьируют в очень широких пределах, отражая пищевую специализацию отдельных групп.
Кишечник обычно дифференцируется на три-четыре отдела: тонкая кишка (в ее переднюю часть, называемую двенадцатиперстной кишкой, открываются протоки печени и поджелудочной железы),
толстая кишка и задняя (или прямая) кишка, открывающаяся в клоаку или самостоятельным анальным отверстием; на границе между тонкой и толстой кишками развивается слепая кишка (в зачаточном состоянии она есть у пресмыкающихся, обычно слабо развита у птиц и хорошо - у большинства млекопитающих). Слизистая кишечника содержит слизистые и пищеварительные железы, выделяющие слизистый секрет муцин (предотвращает самопереваривание тканей стенок кишечной трубки), комплекс пищеварительных ферментов и гормоны, регулирующие процесс переваривания. Хорошо развита мускульная оболочка, осуществляющая перистальтику кишечника и движение пищевых масс. В кишечник поступают образующаяся в печени желчь и ферменты поджелудочной железы. В передних отделах кишечника идет химическая переработка пищи (переваривание) и ее всасывание; в задней кишке происходит преимущественно всасывание воды и формирование каловых масс. Внутренняя поверхность кишечника увеличивается за счет развития складки (спиральный клапан круглоротых и низших рыб) либо удлинением кишечника, образующего петли. Помимо этого, увеличение всасывательной поверхности достигается развитием мелкой складчатости слизистой или образованием на ней многочисленных мелких сосочков - ворсинок. Особенно многочисленны и хорошо развиты ворсинки в кишках птиц и млекопитающих. Часть слизистой оболочки ротовой и клоакальной полостей образуется из эктодермы, а слизистая всего остального кишечного тракта - из первичной кишки, или энтодермы.
Печень и поджелудочная железа хорошо развиты у всех позвоночных животных. В эмбриогенезе печень развивается как слепой вырост, отшнуровывающийся от кишечника и превращающийся в компактную железу. В печени вырабатывается желчь, которая по желчному протоку (часто предварительно накапливаясь в желчном пузыре) поступает в начальную часть тонкой кишки. Желчь эмульгирует жиры и активизирует расщепляющую жиры липазу - фермент, выделяемый поджелудочной железой; благодаря своей щелочной реакции желчь нейтрализует кислый желудочный сок и возбуждает перистальтику кишечника. Кроме того, печень - важный кровеочистительный орган: в ней нейтрализуются поступающие в кровь вредные для тканей продукты распада. Наконец, в печени синтезируется гликоген (животный крахмал) и некоторые витамины (К)- Запасы гликогена служат энергетическим резервом организма, а витамин К играет важную роль в механизмах свертывания крови.
Поджелудочная железа развивается из нескольких мелких выпячиваний кишки в области печеночного выроста и превращается в компактную или дольчатую железу, лежащую на брыжейке начальной части тонкой кишки. Поджелудочная железа выделяет комплекс пищеварительных ферментов, среди них - трипсин (переваривает белки), амилаза (расщепляет углеводы - крахмал и др.) и липаза (переваривает жиры). В ткани поджелудочной железы обособляются островки Лангерганса, представляющие орган внутренней секреции, гормоны которого (инсулин и глюкагон) регулируют углеводный обмен.

У высших рыб (хрящевые и костные ганоиды, костистые рыбы) как вырост спинной части начала кишечника образуется плавательный пузырь, выполняющий функцию гидростатического органа и барорецептора, а иногда и добавочного органа дыхания.
Дыхательная система. У первичноводных позвоночных животных (бесчелюстные и рыбы), как и у низших хордовых, образуются жаберные щели, сообщающие полость глотки с внешней средой.
У бесчелюстных (круглоротых) в жаберных щелях развиваются
складчатые стенки. У водных челюстноротых на перегородках между жаберными щелями развиваются складки слизистой оболочки - жаберные лепестки; их совокупность составляет жабры. К жаберным лепесткам кровь приносится артериями, а в них развивается густая сеть капилляров. Обмен газами в жабрах позвоночных построен по типу так называемых «противоточных систем»: при встречном движении кровь контактирует со все более богатой кислородом водой, что обеспечивает ее эффективное насыщение (рис. 45). Увеличение поверхности поглощения кислорода благодаря образованию жабр сопровождалось уменьшением числа жаберных щелей у позвоночных по сравнению с низшими хордовыми. У цельноголовых (из хрящевых рыб) намечается редукция межжаберных перегородок и образуется кожистая (не имеющая костей) жаберная крышка, прикрывающая снаружи область жаберных щелей. У костных рыб в жаберной крышке возникает костный скелет, а межжаберные перегородки редуцируются, что способствует более интенсивному омыва- нию водой жаберных листков. Основная функция жабр - газообмен: поглощение кислорода и выделение углекислоты. Наряду с этим жабры рыб выполняют и роль добавочных органов водного и солевого обмена (поглощают и выделяют воду и ионы солей, особенно хлористого натрия), способствуя поддержанию устойчивого осмотического давления крови и тканевых жидкостей, выделяют в значительных количествах аммиак и мочевину. В качестве добавочных органов дыхания у отдельных групп рыб функционируют кожа, плавательный пузырь и специализированные участки кишечной трубки (см. ниже).
У многоперовых и двоякодышащих рыб в виде парного выпячивания задней брюшной части глотки развиваются полые образования, внешне напоминающие плавательный пузырь, коротким каналом открывающиеся на брюшной стенке начальной части пищевода. Они функционируют как легкие. У личинок земноводных образуются жаберные щели и внутренние и наружные жабры, редуцирующие во время метаморфоза и заменяемые легкими, возникающими как парные выпячивания брюшной части глотки в области последней жаберной щели.

У первично наземных позвоночных - амниот (пресмыкающихся, птиц и млекопитающих) на относительно ранних стадиях зародышевого развития возникают зачатки жаберных щелей, вскоре исчезающие. На брюшной стороне глотки обособляется непарный желоб, у конца которого возникают парные выросты, превращающиеся в легкие; желоб превращается в трахею (воздуховод). Внутренняя поверхность легких резко увеличивается благодаря развитию сложной сети перекладин и складок, разделяющих полость легкого на мелкие ячейки. Интенсификации дыхания способствует не только рост внутренней поверхности легких, но и образование грудной клетки, обеспечивающей интенсивное вентилирование легких. В зародышевом периоде у высших позвоночных (амниот) в качестве основного органа дыхания функционирует зародышевый мочевой пузырь - аллантоис. С момента вылупления (рождения) функция дыхания переходит к легким.
Кровеносная система. Как и у бесчерепных, кровеносная система позвоночных замкнутая: кровь циркулирует по системе кровеносных сосудов, стенки которых имеют гладкие мускульные волокна и тонкую внутреннюю эндотелиальную оболочку; через такую систему биологических мембран обеспечивается активный обмен веществами между кровью и тканевой жидкостью. Замыкание кровеносной системы и появление эндотелиальной выстилки стенок кровеносных сосудов, наметившееся еще у бесчерепных, привело к появлению в организме трех сред: внутриклеточной, внутритканевой с межклеточной жидкостью- лимфой, и кровяного русла с кровью. Такая организация внутренней среды тела позвоночных обеспечивает ее устойчивость, необходимую для протекания биохимических процессов в подвижном организме, быстро меняющем как места пребывания (внешние условия), так и свое внутреннее состояние. Замыкание кровеносной системы, анатомически кажущееся малозначительным событием в эволюции, в действительности имело большое приспособительное значение; с ним связано оформление особой лимфатической системы (см. ниже).
Важное эволюционное приобретение позвоночных - образование сердца - специального органа» обеспечивающего ток крови по сосудам тела. Сердце возникло как расширение брюшной аорты. Его стенки образованы поперечнополосатой мускулатурой, тогда как в стенках кровеносных сосудов имеются лишь гладкие мышечные волокна. Сердце может быть двухкамерным (круглоротые, рыбы), т. е. состоять их одного предсердия (atrium) и одного желудочка (ventriculus), трехкамерным (земноводные, пресмыкающиеся) - из двух предсердий и одного желудочка, и четырехкамерным (птицы, млекопитающие) - из двух предсердий и двух желудочков. Дополнительные отделы сердца - венозная пазуха и артериальный конус; степень их развития варьирует в разных классах. В зависимости от направления движения крови различают два типа кровеносных сосудов: по более толстостенным артериям (arteriae) кровь течет от сердца (из желудочка), по венам (venae) она двигается к сердцу, попадая в венозную пазуху и предсердие. Самые мелкие разветвления артерий распадаются на мельчайшие кровеносные сосуды - капилляры, затем соединяющиеся в вены. В немногих случаях вены также могут распадаться


Рис. 46. Схема кровообращения позвоночных животных (по Бобринскому и Матвееву, 1966), I - первичноводное; II - земноводное; III - высшее наземное позвоночное; черным цветом показана венозная кровь, белым - артериальная, штриховкой - смешанная:

- предсердие, 2 - желудочек, 3 - брюшная аорта, 4 - спинная аорта, 5 - правое предсердие, 6 - левое предсердие, 7 - общий желудочек, 8 - легочная артерия, 9 - легочная вена, 10 - правый желудочек, 11 - левый желудочек. Стрелки указывают направление тока
крови
на капилляры, вновь объединяющиеся в вены. Тогда говорят об образовании воротной системы (воротная система печени, почек, гипофиза и др.).
У водных позвоночных (круглоротые, рыбы) только один круг кровообращения (рис. 46, /): из желудочка двухкамерного сердца кровь идет в жабры, где насыщается кислородом; по ответвлениям спинной аорты кровь разносится по всему телу, отдавая питательные вещества и кислород и насыщаясь продуктами распада; по венам венозная кровь возвращается в сердце (в предсердие). У земноводных и пресмыкающихся возникают два круга кровообращения (намечаются у двоякодышащих рыб): малый (легочный) и большой, четко не разделенные друг от друга, так как при трехкамерном сердце кровь из предсердий поступает в единый (хотя иногда перегородками частично разделенный) желудочек. Малый круг начинается в желудочке, включает легкие и завершается в левом предсердии. Большой круг кровообращения: от желудочка по сосудам всего тела в правое предсердие (рис. 46, II). В левое предсердие попадает артериальная кровь из легких, в правое ¦- венозная кровь со всего тела и - у земноводных - примесь артериальной крови, окислившейся в капиллярах кожи и ротовой полости. При одновременном сокращении предсердий кровь поступает в желудочек; развитие в его полости неполных перегородок и карманов уменьшает, но не предотвращает перемешивание крови.

Разделение потоков крови по ее составу при выходе из желудочка (наиболее богатая кислородом - в голову, наиболее бедная - в органы дыхания) обеспечивается расположением перегородок, работой клапанов желудочка и местом отхождения от него основных артериальных стволов. Этот тип кровеносной системы можно рассматривать как переходный между типично водным и типично наземным типами кровеносной системы.
У птиц и млекопитающих (рис. 46, ///) образуются полностью разделенные два круга кровообращения, что обеспечивается четы- рехкамерностыо сердца и полной изолированностью его венозной правой части от левой, артериальной. Малый круг кровообращения: правый желудочек - легочные артерии- легкие -легочные вены - левое предсердие. Большой круг: левый желудочек - аорта - артерии к голове, конечностям, внутренним органам - вены, впадающие в правое предсердие (рис. 46, III). С преобразованиями сердца, впадающих и отходящих от него кровеносных стволов идет перестройка периферической системы кровеносных сосудов.
В ряду позвоночных животных (круглоротые - млекопитающие) интенсифицируется кроветворение. У круглоротых форменные элементы крови (эритроциты, лимфоциты) образуются в жаберных лепестках, лимфоидной ткани кишечника и в почках. У рыб образование эритроцитов идет в селезенке, почках, отчасти в кровяном русле и стенке кишечника, лейкоцитов - в селезенке, ткани почек и других участках тела. У земноводных эритроциты образуются в селезенке, в костном мозге впервые образовавшихся крупных трубчатых костей и кровяном русле; лейкоциты - в печени и в почках. У рептилий, птиц и млекопитающих эритроциты образуются главным образом в костном мозге и менее в селезенке и в кровяном русле, а лимфоциты - в лимфоидных участках селезенки, печени, костного мозга и в лимфатических узлах (особенно у млекопитающих); утрачивая роль основного органа кроветворения, селезенка становится основным депо крови.
В ряду позвоночных животных увеличивается число эритроцитов, количество гемоглобина и объем крови (табл. 2). Одновременно повышается кровяное давление и растет буферность крови: она обеспечивается щелочным резервом (бикарбонаты - углекислота). Высокое содержание белков, сахаров и других веществ в плазме крови обусловливает ее энергетические и защитные свойства (иммунитет). Широкие колебания всех этих показателей в пределах каждого класса определяются экологическими особенностями отдельных видов (степенью их подвижности, богатством кислорода в среде и др.). Депонирование крови в ряде органов (печень, селезенка, кожа и др.) позволяет быстро восстановить потери при кровотечениях и увеличить объем циркулирующей крови при усилении движений.
Лимфатическая система. При замкнутой кровеносной системе кровь не является жидкой средой, окружающей клетки. Эту роль выполняет тканевая (межклеточная) жидкость - лимфа. У позвоночных обособляется лимфатическая система, включающая разного диаметра лимфатические сосуды и полости. Крупные сосуды имеют
соединительнотканные стенки с мышечными волокнами; их внутренняя оболочка образует складки - клапаны, допускающие ток лимфы лишь в одном направлении. Мелкие сосуды (лимфатические капилляры) со стенками из однослойного эпителия открываются непосредственно в межклеточные пространства. Собираемая капиллярами лимфа изливается в вены. Ток лимфы обеспечивается сжатием лимфатических сосудов окружающими мышцами и органами, а также пульсацией расширений этих сосудов - лимфатических сердец. Способствует току лимфы и присасывающее действие сердца. По ходу лимфатических сосудов расположены лимфатические железы - особенно выраженные у млекопитающих; в них образуются белые кровяные тельца - лимфоциты и происходит фагоцитоз проникших в организм болезнетворных агентов.
Таблица 2. Изменения количества крови и ее кислородной емкости в разных классах позвоночных животных (по П. А. Коржуеву, 1964, с изменен.)


Класс

Количество крови в % от массы тела

Количество гемоглобина

Число эритроцитов в I мм3 крови в мли. шт.

в г на 1 кг массы тела

в г% в крови

Круглоротые

4,0-5,0

gt;

3,0-8,0

0,13-0,17

Рыбы

1.1-73

0,5-^-3,4

0,8-17,4

0,09-3,9

Земноводные

12-7,2

0,2-4,8

1,9-10,0

0,02-0,7

Пресмыкающиеся

3,9-8,3

2,1-4,9

4,0-11,0

0,5-1,6

Птицы

6,5-15,6

4,6-17,8

|7,0-20,0

1,6-6,0

Млекопитающие

4,8-Щ0

4,9-21,1

8,0-23,0

3,0-25,0

Выделительная система. С возрастанием уровня обмена веществ в ряду позвоночных животных шло совершенствование органов выделения; ими служат парные почки (renes). У зародышей (личинок) позвоночных образуется головная почка или предпочка (pronephros). Она представляет собрание нефридиальных канальцев, открывающихся мерцательными воронками (нефростомамн) в полость тела, а другими концами - в собирательные канальцы, впадающие в выводной проток пронефроса. Около части нефростомов в стенках полости тела возникают грушевидные выросты из клубочков артериальных капилляров (рис. 47, А - 1). Они выделяют плазму крови, содержащую как продукты распада, так и полезные вещества. Образующиеся в головной части нефридиальных канальцев капсулообразные расширения охватывают такие клубочки сосудов, создавая боуменовы капсулы. Так образуется основной элемент почки позвоночных - мальпигиево тельце (рис. 47, 2). Продукты распада попадают в почечные канальцы пронефроса из целомической жидкости через нефро- стомы, а из крови - путем фильтрации через сосудистые клубочки. Черты строения пронефрической почки сохранились в дефинитивной мезонефрической почке взрослых миног.

Еще в зародышевом (личиночном) состоянии позади про- нефроса образуется первичная, или туловищная, почка (mesonephros). Часть почечных канальцев мезонефроса также имеют нефростомы (воронки) и мальпигиевы тельца, тогда как большинство их теряет воронки, имея только хорошо развитые мальпигиевы тельца. Возвращение в кровяное русло содержащихся в фильтрате мальпигиевых телец ценных веществ (воды, сахаров, витаминов и др.) производится в выводных канальцах.
alt="" />Ко времени образования мезонефроса проток предпочки (пронефроса) у хрящевых рыб расщепляется на два канала: вольфов и мюллеров; у других позвоночных мюллеров канал возникает как новообразование. В вольфов канал открываются пртоки мезонефроса. У самцов анам- ний отходящие от семенника семявыносящие канальцы впадают в переднюю (у двоякодышащих рыб в заднюю) часть мезонефрической почки, которая теряет выделительную функцию, превращаясь фактически в придаток семенника. Поэтому у самцов анамний вольфов канал выполняет функцию и мочеточника, и семяпровода (иногда он вновь расщепляется или образует внутри почки длинные выросты,* благодаря чему половой и мочевой тракты разобщаются); пронефрос и мюллеров канал у них редуцируются. У самок вольфов канал выполняет только функцию мочеточника; тогда как мюллеров канал становится яйцеводом (рис. 48, II, III); при этом один из нефро- стомов пронефроса превращается в воронку яйцевода. Созревшая в яичнике яйцеклетка разрывает оболочку фолликула, выпадает в полость тела и через воронку попадает в мюллеров канал - яйцевод; нижняя часть яйцевода часто образует расширение - матку. Мюллеров и вольфов каналы открываются в клоаку. В брюшной части клоаки обычно образуется тонкостенное выпячивание - мочевой пузырь (рис. 48, 9). У части костистых рыб парные вольфовы каналы служат только мочеточником и у самцов и у самок; они впадают в мочевой пузырь. У обоих полов обособляются короткие самостоятельные половые протоки, открывающиеся наружу.
У зародышей первично наземных позвоночных (амниот) образуется пронефрос, потом закладывается мезонефрос и возникают вольфов и мюллеров каналы. Но во второй половине зародышевого развития в тазовой области образуются канальцы вторичной, или тазовой, почки (metanephros); они удлиненны и извиты, не имеют воронок и заканчи-

Рис. 48. Схема взаимоотношений половой н выделительной систем позвоночных животных (по Шмальгаузену, с изменен.) I - нейтральное зародышевое состояние; II - самка анамний; III - самец анамний; IV - зародыш амниот; V - самка амниот; VI - самец амниот (пунктиром обозначены редуцирующиеся отделы): - пронефрос, 2 - мезонефрос, 3 - метанефрос, 4 - канал проиефроса, 5 - мюллеров канал, выполняющий у самок функцию яйцевода, 6 - вольфов канал, выполняющий у самцов анамннй функцию мочеточника и семяпровода, у самцов амннот - только семяпровода, 7 - матка, 8 - мочеточник метанефрнческой почкн, 9 - мочевой пузырь, 10 - клоака, - мочеполовой сннус, 12 - половой член у самцов нлн клнтор у самок, 13 - половая железа, 14 - придаток семенника - остаток мезонефрической почки, 15 - семенник, 16 -
яичннк, 17 - воронка яйцевода, 18 - задняя кншка

ваются мальпигиевыми тельцами (рис. 48, IV-VI). При формировании метанефрнческой почки задний конец вольфова канала дает боковое выпячивание, врастающее в ткань метанефроса; в него прорываются канальцы метанефроса и он превращается в мочеточник (рис. 48, 8). Вольфов канал у самок редуцируется, а остатки мезонефроса превращаются в лимфоидную ткань; мюллеров канал сохраняется и функционирует как яйцевод. У самцов передняя часть мезонефроса, в которую открываются семявыносящие каналы семенников, превращается в придаток семенника (epididymis), а вольфов канал продолжает выполнять функцию семяпровода (рис. 48, 14, 6). В связи с клоакой формируются совокупительные органы. У млекопитающих клоака исчезает и формируется самостоятельное мочеполовое и анальное отверстия.
Половая система. Позвоночные животные, как правило, раздельнополы. Половые железы обычно парные. Яичники (ovarii) имеют более или менее заметное зернистое строение. Семенники (testiculi) отличаются гладкой поверхностью.
Для анамний характерно наружное оплодотворение, но у хрящевых и некоторых костных рыб, хвостатых и безногих земноводных возникает внутреннее оплодотворение. Яйца анамний способны развиваться только в водной (или, в редких случаях, в очень влажной) среде. Лишь у немногих групп появляется яйцеживорождение (задержка развивающегося яйца в нижних частях яйцеводов), настоя
щее живорождение (когда устанавливается обмен между развивающимся зародышем и материнским организмом, например у некоторых акуловых рыб) или развитие яйца идет в специальных наружных складках кожи (игла рыба, сумчатые квакши, пипа и др.). Яйца имеют наружную белковую оболочку, обеспечивающую защиту от механических и химических повреждений (иногда приобретающую большую прочность и водонепроницаемость - у миксин и хрящевых рыб - и приспособления для прикрепления яйца к субстрату). Яйца анамний содержат умеренное количество желтка, испытывают полное, но неравномерное дробление; формирование зародышевых слоев, полости тела и внутренних органов идет у них сходно с эмбриональным развитием бесчерепных (см. выше). Из яйца вылупляется личинка, ведущая водный образ жизни и более или менее похожая на взрослое животное. Сильно отличается строение личинок бесхвостых амфибий, которые лишь путем сложной перестройки - метаморфоза - приобретают признаки взрослых животных.
Для амниот (первично-наземных животных) характерно усложнение строения яйца (увеличение количества желтка и белка, образование плотных наружных оболочек), внутреннее оплодотворение и способность яйца развиваться только в воздушной среде. Это достигнуто изменением хода эмбрионального развития. На сильно перегруженном желтком яйце делится только анимальный полюс и образуется плавающий на желтке однослойный зародышевый диск. На нем возникает первичная бороздка, через которую часть эктодермальных клеток перемещается под эктодерму, давая начало эндодермальному и мезодермальному слоям. Далее идет образование сомитов и обособление всех внутренних органов. Из краевых участков зародышевого диска формируются специальные зародышевые оболочки, внутренняя из них - амнион - выделяет амниотическую жидкость, в которую оказывается погруженным тело зародыша. Как вырост задней части первичной кишки развивается аллантоис, или зародышевый мочевой пузырь, служащий зародышевым органом дыхания.
Полость тела. Полость тела - целом - выстлана тонкой эпителиальной оболочкой - брюшиной (peritoneum): покрывающая внешние стенки полости тела, называется париетальным листком, а покрывающая внутренние органы - висцеральным листком. На двухслойной брыжейке (mesenterium) как бы подвешены к спинной стороне полости тела внутренние органы, в том числе и пищеварительный тракт. В эмбриогенезе всех позвоночных от передней части полости тела обособляется особая околосердечная полость, в которой лежит сердце; ее оболочка называется околосердечной сумкой (pericardium). У млекопитающих диафрагма делит полость тела на две половины: грудную, в которой лежат легкие и окруженное околосердечной сумкой сердце, и брюшную, где расположены желудок, кишечник, печень, почки, яичники и др. У предков хордовых целомическая полость впервые возникала как опорное образование. У хордовых в связи с образованием миохорда целом потерял опорную функцию, но сохранил рессорное значение, уменьшая опасность повреждения внутренних органов при движении.

Хордовые - это самые высокоорганизованные существа из всех представителей царства Животные. Характерные черты строения позволили им стать вершиной эволюции.

Признаки хордовых

Основными чертами этих животных является наличие хорды, нервной трубки и жаберных щелей в глотке. Хордовые - это организмы, у которых перечисленные признаки могут существенно видоизменяться.

Так, скелет может быть наружным и внутренним. А развитие хордовых в онтогенезе может характеризоваться тем, что жаберные щели зарастают еще в зародышевом развитии организмов. При этом у них развиваются другие органы дыхания - воздушные мешки или легкие.

Осевой скелет

Основная характеристика хордовых - это наличие хорды. Она является внутренним который в виде цельного тяжа проходит через все тело. На протяжении всей жизни хорда остается не у многих представителей этого типа. К ним относятся разные виды ланцетников, представляющих класс Головохордовые подтипа Беспозвоночные.

У остальных представителей хорда развивается в скелет. Только у немногих он состоит из хрящевой ткани. Костные рыбы, птицы и млекопитающие имеют полностью окостеневший скелет. В процессе эволюции он усложняется. Его составными частями являются череп, позвоночник, грудная клетка, пояса и непосредственно верхние и нижние конечности.

Жаберные щели в глотке

Хордовые - это животные, у которых образуются как выросты глотки. В этом заключается их основное отличие от беспозвоночных. У данной группы они являются производными конечностей.

Безусловно, этот анатомический признак имеют не все хордовые. Жаберные щели сохраняются у ланцетника и хрящевых рыб: акул и скатов. У животных, которые приспособлены к дыханию атмосферным кислородом, на ранних стадиях зародышевого развития они зарастают. После формируются легкие.

Особенности нервной системы

Система, обеспечивающая взаимосвязь организма с окружающей средой, у хордовых первоначально формируется по типу нервной трубки. Она имеет эктодермальное происхождение.

Хордовые - это высокоразвитые животные во многом благодаря особенностям строения нервной системы. Так, у млекопитающих она представлена спинным мозгом, находящемся в канале позвоночника, а также головным. Они являются частями центральной нервной системы. Головной мозг надежно защищен костями черепа, которые соединены неподвижно. Он дифференцируется на отделы по функциональному признаку. Анатомически через отверстие, образуемое позвонками, головной мозг соединен со спинным мозгом. Периферическую часть системы образуют спинно - и черепно-мозговые нервы. Они выполняют роль «транспортной магистрали», объединяя сложный организм в единое целое и координируя его работу.

Обуславливает сложное поведение хордовых животных, формирование условных рефлексов и четкой программы инстинктивного поведения.

Разнообразие хордовых

Данный тип включает в себя три Личиночнохордовые (Оболочники) и Черепные (Позвоночные).

К первому из них относится только 30 видов, встречающихся в наше время. Их представителями являются ланцетники. Эти животные внешне напоминают хирургический инструмент под названием ланцет.

Тело этих небольших животных практически всегда наполовину находится в песке. Так ланцетнику удобнее фильтровать воду, заглатывая питательные частицы.

Самым многочисленным подтипом хордовых являются Позвоночные. Они освоили абсолютно все среды обитания, заполнили пищевые цепи и экологические ниши.

Водными обитателями являются рыбы. Их тело обтекаемой формы покрыто чешуей, они приспособлены к жаберному дыханию, двигаются при помощи плавников.

Первыми вышедшими на сушу являются земноводные животные. Это лягушки, жабы, тритоны, черви и рыбозмеи. Их общее название связано с тем, что они живут на суше, дышат при помощи легких и кожи, а вот процесс их размножения происходит в воде. Подобно рыбам, их самки мечут в воду икру, которую самцы поливают семенной жидкостью.

Типично наземные животные - это пресмыкающиеся. Ящерицы, змеи, черепахи и крокодилы проводят в воде лишь время охоты. Размножаются они яйцами, которые откладывают в особых укрытиях на суше. Их кожа сухая, покрыта плотными чешуйками.

Последний признак унаследовали от пресмыкающихся птицы. Неоперенная часть их ног называется цевка. Именно она и покрыта небольшими чешуйками. Этот факт ученые рассматривают как доказательство происхождения в процессе эволюции. Птицы способны к полету благодаря многим чертам внешнего и внутреннего строения. Это видоизмененные передние конечности, перьевой покров, легкий скелет, наличие киля - плоской кости, к которой крепятся мышцы, приводящие в движение крылья.

Наконец, Звери, или Млекопитающие, являются венцом эволюции. Они живородящие и выкармливают детенышей молоком.

Хордовые животные - самые сложноорганизованные, разнообразные по строению, играющие важнейшую роль в природе и жизни человека.



gastroguru © 2017