Компьютерный томограф строение. КТ в медицине: что это такое, как делают исследование и что показывает снимок томограммы? Что происходит во время компьютерной томографии

На сегодняшний день наиболее инновационным подходом в исследовании организма является рентгеновская компьютерная томография, которая позволяет наиболее точно и эффективно определить место поражения, а также структуру любого человеческого органа или ткани.

Точная диагностика заболеваний всегда была ключевым моментом во врачебной практике. Ведь без определения диагноза зачастую практически невозможно назначить компетентное лечение. Производители современной медицинской техники усиленно работают в этом направлении. С каждым годом методы и средства диагностирования становятся наиболее продвинутыми и точными.

Принцип работы компьютерной томографии и ее главные отличия от иных методов диагностики

Изобретение в свое время стало прорывом в диагностике различных заболеваний. Однако прогресс не стоит на месте. Эволюция затронула не только человека, но и все приборы и технику, связанную с ним. Следующим прорывом, который повлиял на медицинскую отрасль и мир в целом, стало изобретение компьютера. Совместив и усовершенствовав оба этих мировых изобретения, производители медицинского оборудования предоставили миру аппарат, который стал отправной точкой для развития целой медицинской отрасли. В тот момент получила свое начало рентгеновская компьютерная томография или сокращенно РКТ.

Принцип работы компьютерной томографии (КТ) основывается на применении все тех же рентгеновских лучей. Однако структура работы устройства имеет несколько отличий. Виной этому различная структура обоих аппаратов и их функциональные возможности.

Рентген формирует изображение в единичный момент воздействия пучком лучей на организм, которые полностью пронизывают человека и тем самым воспроизводят картину его органов. Это изображение, как правило, двумерно, и на нем нельзя распознать отдельные ткани или органы. Лишь общую суть и протекание процессов возможно вычленить из этой картинки.

КТ основана на длительном анализе исследуемого объекта. Принцип ее работы заключается в последовательном непрерывном низкочастотном облучении определенного участка. Процесс этот производится, как правило, в неподвижном состоянии, что может вызвать некоторые сложности для пациента, связанные с длительным временем обездвиживания. Однако эти вторичные неудобства являются необходимой мерой для получения точного, а, главное, верного диагноза. Попеременно проходя через тело человека, лучи возвращаются в специальный приемник, который анализирует их и выводит результаты исследований на экран компьютера. Визуальное отображение, полученное таким способом, является детальным и четким, поскольку полностью отображает ткани, кости и даже сосуды исследуемого участка. Это изображение является отличным помощником при составлении верного диагноза.


Преимущества компьютерной томографии

В более технологически развитых странах Европы или Америки КТ входит в состав обязательного ежегодного медицинского осмотра. У нас же эта процедура относится к разряду дорогостоящих. Что влечет использование устаревших моделей аппаратуры и рентгеновских устройств в поликлиниках и больницах. Лишь специализированные и в большинстве случаев платные клиники могут похвастаться наличием аппарата КТ. Однако при всех недостатках медицинского обслуживания в нашем государстве лучшим решением все-таки является использование компьютерной томографии, даже если придется вложить материальные средства в этот способ диагностики. К неоспоримым преимуществам такого метода исследований относятся:

  • высокая точность визуальной картинки;
  • абсолютная безболезненность процедур;
  • низкий уровень радиационного излучения;
  • широкий спектр применения аппарата.

Все эти положительные стороны существенно выделяют КТ по сравнению с другими методами диагностики, которые не дают столь четкого понятия процессов, протекающих в исследуемом участке. Что позволяет более детально и четко определить характер проблемы и выбрать способ ее нейтрализации.


Предосторожности к применению компьютерной томографии

Как и любой другой прибор, оснащенный рентгеном, КТ имеет ряд противопоказаний, которые можно назвать предосторожностями или своеобразными ограничениями. К ним относятся:

  • беременность;
  • возраст до 16 лет;
  • повышенная чувствительность к радиоактивному фону.

Женщины, особенно пребывающие в первом триместре беременности, должны обязательно сообщать врачу о своем положении. Лишь он может определить целесообразность проведения процедур и степень опасности для здоровья женщины.

Детский организм постоянно меняется вследствие своего непрерывного роста, что может стать проблемой для проведения диагностики. Доза радиации, как бы ничтожна она ни была, для детского неокрепшего организма может стать существенным испытанием. Поэтому врачи крайне редко, лишь в особых случаях назначают проведение КТ детям до 16 лет.


Некоторые взрослые также имеют повышенную чувствительность к воздействию радиации. Выражается это в ухудшении их самочувствия и головокружении, в особо серьезных случаях возможна потеря сознания и рвота. Но беспокойство этот вызывать не должно, поскольку все эти симптомы проходят сами собой.

В целом КТ не имеет противопоказаний и может проводиться практически всем людям. Единственным исключением являются беременные женщины и дети, которые выделяются в отдельную категорию.

Основные виды компьютерной томографии

Компьютерная томография также имеет свое разделение по типу конструкции устройств и их воздействию на организм человека. На сегодняшний день выделяют два основных вида КТ:

  • спиральный метод;
  • многослойный метод.

Метод спиральной компьютерной томографии заключается в том, что аппарат синхронно перемещает по спирали источник . В это время плоскость, на которой расположены датчики, тоже движется, что создает непрерывное воздействие на определенный участок.

Врач может задавать параметры вращения и его скорость. Чем выше эти показатели, тем большая площадь подвергается исследованию, что делает возможным ускорение исследований и влияет на степень облучаемости объекта.

Многослойная компьютерная томография — это усовершенствованный метод спирального анализа, который позволяет более детально изучить объект и воспроизвести полученные при этом данные с особой четкостью. Конструкция этого прибора такова, что принимающие датчики выстроены в несколько рядов на поверхности устройства. При помощи подобного устройства существует возможность отслеживать процессы, протекающие в организме в данный момент. Кроме того, с помощью этого аппарата можно просканировать сразу весь орган лишь за один проход томографа.

Компьютерная томография – это способ послойной визуализации отдельных органов или участков тела человека с помощью рентгеновского излучения и компьютерной обработки полученных данных.

Метод компьютерной томографии, как и плоскостная рентгенография, основывается на способности различных тканей организма в неодинаковой степени поглощать и пропускать ионизирующее излучение, но принцип работы компьютерного томографа и пленочного рентгеновского аппарата в корне различный.

Компьютерный томограф

Как формируется изображение в результате компьютерной томографии?

При получении плоскостного рентгеновского снимка просвечивание тела пациента и получение изображения на пленке происходит одновременно. При этом картинка отражает суммарное поглощение рентгеновского луча при прохождении через все слои исследуемого участка. Способность поглощать излучения называют рентгеновской плотностью. Чем она выше, тем меньше лучей попадает на пленку и, как следствие, изображение будет более светлым.

При проведении компьютерной томографии используется совершенно другой принцип: область исследования виртуально делится на микроскопические кубики – вокселы (от англ. volume element – элементы объема). Для каждого из них в процессе компьютерной обработки данных будет рассчитана собственная величина рентгеновской плотности. Чем она выше, тем светлее будет пиксель (от англ. picture element), соответствующий этому вокселу на плоскостной картине среза. Получение изображения проходит в два этапа:

  • Сканирование проводится с помощью рентгеновской трубки, которая закреплена внутри рамы аппарата и может перемещаться по окружности и одного или нескольких датчиков, вращающихся синхронно с трубкой или неподвижно закрепленных в зависимости от модели аппарата. Этот этап аналогичен получению большого количества рентгеновских снимков в различных проекциях с той разницей, что приемником является не пленка, а электронный датчик. Он обладает большей чувствительностью в сравнении с пленкой, поэтому облучение при КТ превышает таковое при рентгенографии не в тысячи, а в несколько десятков раз.

Схема работы компьютерного томографа: 1 -вращающаяся рентгеновская трубка; 2 — неподвижные детекторы

  • Компьютерная обработка: на основании данных полученных на первом этапе, компьютер составляет линейную систему уравнений для вычисления плотности каждого элемента объема. Для каждого направления луча система фиксирует набор вокселов, через которые он проходит и приравнивает сумму поглощения рентгеновского излучения в каждом из них к результирующему значению, которое было получено в результате сканирования. Для получения изображения размером 300х300 пикселов компьютеру потребуется решить систему из 90 тыс. линейных уравнений. Четкость изображения будет зависеть от того, сколько срезов и с каким разрешением было отсканировано.

Это интересно: вычислительный блок томографа формирует изображения, рассчитывая рентгеновскую плотность для каждого пикселя. Для этого процессору приходится решать целую систему уравнений, составленную на основании данных сканирования.

Какие структуры можно увидеть с помощью компьютерной томографии?

КТ в сравнении с рентгенографией обладает большей чувствительностью. Если на плоскостном суммационном изображении контрастными воспринимаются ткани с разницей рентгеновской плотности в 10-20%, то на компьютерном скане можно различить участки, отличающиеся всего на 1%. Для обозначения плотности ткани используется относительная денситометрическая шкала Хаунсфилда: за 0 принята плотность воды, положительные значения имеют мышцы и кости, отрицательные – жировая ткань и воздух. Всего в шкале насчитывает более 4 тыс. градаций, что вполне достаточно для получения контрастного изображений как костной, так и мягких тканей, если параметры сканирования определены верно.

Компьютерная томография получает все более и более широкое распространение

Компьютерный томограф различает более 4 тыс. градаций рентгенологической плотности тканей, в то время как монитор может передать всего 256 оттенков серого. Для сохранения точности используют пересчет градаций в интересующем диапазоне: костное, мягкотканное или легочное окно.

В медицине компьютерная томография используется для исследования таких органов, как:

  • Головной мозг . КТ используется преимущественно для экстренной диагностики травматических повреждений и геморрагического инсульта, крупные опухоли и сосудистые мальформации также видны на КТ. Для исследования сосудов головного мозга применяется КТ с контрастированием. При просмотре скана в костном окне видны травматические повреждения черепа и костей лицевого скелета.
  • Зубочелюстную систему и придаточные пазухи чаще исследуют с помощью конусно-лучевой томографии. Эта методика позволяет проводить сканирование не полного среза, а ограниченного участка тела и, как следствие, снизить дозу облучения. Конусно-лучевая КТ зубов дает представление о состоянии корневых каналов и периапикальных тканей, наличии корневых кист и гранулем, а также внутричелюстных новообразований. КТ придаточных пазух носа показывает их воздушность, а также дает возможность судить о причинах изменений в них;

  • Позвоночник сканируется полностью или по сегментам в зависимости от предполагаемого диагноза. КТ дает информацию о плотности кости позвонка, наличии переломов и травматических повреждений, позволяет выявлять спондилолистез и сужение позвоночного канала. Подробной информации о состоянии межпозвоночного диска и нервного корешка с помощью такого обследования получить не удастся.
  • Грудную клетку сканируют с получением изображения в костном окне для выявления травматических повреждений костей грудной клетки или в легочном для изучения структуры легочной ткани. С помощью этого метода можно выявить новообразования и воспалительные изменения в легочной ткани и сделать предположение об их природе. Диагноз ставится по совокупности клинического обследования и результатов сканирования.
  • Брюшную полость чаще обследуют с помощью МРТ, так как разрешающая способность этого метода для исследования мягких тканей выше. Тем не менее, если требуется получить результат и поставить диагноз быстро, предпочтение отдается рентгеновской томографии, так как проводится она значительно быстрее. С помощью КТ можно выявить и определить локализацию патологических скоплений жидкости в брюшной полости, конкрементов в желчном пузыре, определяются кисты, опухоли и абсцессы брюшной полости.

Мультиспиральная компьютерная томография и ее возможности

Мультиспиральный компьютерный томограф

Принцип работы мультиспирального компьютерного томографа отличается от обычного последовательного тем, что для сканирования используется не один вращающийся, а множество закрепленных на месте и расположенных вокруг тела пациент датчиков. Это позволяет увеличить скорость сканирования. Это дает возможность получать изображение органов, находящихся в постоянном движении, например, сердца. С применением внутривенного контрастирования с помощью МСКТ можно получить изображение коронарных артерий полностью неинвазивным методом, поэтому такое исследование считается блестящей альтернативой интервенционной коронарографии.

МСКТ сердца с контрастированием – неинвазивная процедура, не уступающая в информативности интервенционной коронарографии.

Обоснование назначений, риски и ограничения метода

Риск для здоровья пациента при проведении КТ может быть связан с действием ионизирующего облучения либо с реакцией на вещество, применяемое для внутривенного контрастирования. В первом случае врач должен обосновать назначение, взвесив предполагаемую дозу облучения, ценность диагностической информации, ее доступность при проведении альтернативных методов обследования и риск возможной диагностической ошибки при отказе от КТ.

Детям компьютерная томография проводится, если польза от диагностики в значительной мере превышает возможные риски

Исследование противопоказано беременным женщинам, а детям младшего возраста назначается с осторожностью. Контраст не используют при патологии почек, сахарном диабете, беременности, тиреотоксикозе и общем тяжелом состоянии пациента. Если показания к исследованию определены верно, а необходимую информацию невозможно получить другим путем, томографию можно проводить столько раз, сколько это необходимо.

Величина лучевой нагрузки, также как и диагностические возможности метода, зависят от класса аппарата и профессионализма врача-рентгенолога, который устанавливает индивидуальные параметры сканирования в зависимости от предполагаемого диагноза и интересующей клинициста информации. Описание, которое выдается на руки пациенту после прохождения томографии, не может содержать окончательного диагноза. Насколько бы явными ни были признаки заболевания на КТ, это исследование остается в медицине вспомогательным, а диагноз должен быть подтвержден клиническими и лабораторными данными.

Некоторые ткани в разной степени поглощают излучение, поэтому легко различимы – естественное контрастирование.

Цель искусственного контрастирования – получение дифференцированного изображения тканей, примерно одинаково поглощающих излучение. С этой целью в организм вводят вещества, сильнее или слабее поглощающие рентгеновское излучение, чем мягкие ткани, тем самым создавая контраст в исследуемых органах.

Рентгенопозитивные – вещества, задерживающие больше излучения, чем мягкие ткани (на основе тяжелых элементов – бария или йода)

Рентгенонегативные – вещества, задерживающие меньше излучения, чем мягкие ткани (закись азота, углекислый газ, воздух)

Основные требования к РКВ:

    создание высокой контрастности изображения

    безвредность при введении в организм больного

    быстрое выведение из организма

Способы контрастирования:

    прямое механическое введение РКВ в полость органа (гастрография, ангиография и тп)

    принцип концентрации и выведения: введение контрастного вещества в кровь, который затем поглощается, концентрируется и выделяется определенным органом. (исследование мочевыделительной системы, желчных путей)

Применяемые рентгеноконтрастные вещества:

    препараты сульфата бария – водная взвесь. Исследование пищеварительного тракта. Безвредна, нерастворима в воде и пищеварительных соках. Принимают в ввиде суспензии в концентрации 1:1 или 5:1. Для придания дополнительных свойств добавляют химические активные вещества – замедление оседания, прилипания к стенке, увеличение вязкости.

    Йодированные масла. Эмульсия йодистых соединений в растительных маслах. Исследование бронхов, лимфатических сосудов, полости матки, свищевых ходов. (липоидол). Высокая контрастность, мало раздражают ткани.

Биологическая проба: внутривенно 1 мл РКВ, подождать 2- 3 мин, внимательно наблюдая за состоянием пациента. В случае отсутствия аллергической реакции – введение основной дозы РКВ – от 20 до 100 мл.

    Газы (закись азота, углекислый газ, воздух). В кровь- только СО2, вследствие высокой растворимости. Полости тела, клетчатые пространства – закись азота - избежание газовой эмболии. Пищеварительный тракт – обычный воздух.

Двойное контрастирование – проведение исследования одновременно с двумя РКВ – рентгенопозитивным и рентгенонегативным.

15. Компьютерная рентгеновская томография. Принципы получения компьютерных томограмм. Особенности изображения органов и тканей.

Компьютерная томография - это послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объектаузким пучком рентгеновского излучения.

Получение компьютерныхтомограмм: узкий пучок рентгеновского излучения сканирует человеческое тело по окружности. Проходя через ткани, излучение ослабляется соответственно плотности и атомному составу этих тканей. По другую сторону от пациента установлена круговая система датчиков рентгеновского излучения, каждый из которых (а их количество может достигать нескольких тысяч) преобразует энергию излучения в электрические сигналы. После усиления эти сигналы преобразуются в цифровой код, который поступает в память компьютера. Зафиксированные сигналы отражают степень ослабления пучка рентгеновских лучей (и, следовательно, степень поглощения излучения) в каком-либо одном направлении. Вращаясь вокруг пациента, рентгеновский излучатель просматривает его тело в разных ракурсах, в общей сложности под углом 360°. К концу вращения излучателя в памяти компьютера оказываются зафиксированными все сигналы от всех датчиков. Продолжительность вращения излучателя в современных томографах очень небольшая, всего 1-3 с, что позволяет изучать движущиеся объекты.

Компьютер реконструирует внутреннюю структуру объекта. В результате получается изображение тонкого слоя исследуемого органа – несколько мм, которое выводится на дисплей и врач обрабатывает его в зависимости от задачи исследования: масштабирование, выделение интересующей области, определение размера органа, число и характер патологического состояния. Попутно определяют плность ткани по шкале Хаунсфильда: нулевая отметка - плотность воды (плотность кости +1000 HU, воздуха -1000 HU). На фотопленке выделение ограниченного диапазона на шкале Хаунсфильда – окна, размеры которого не превышают несколько десятков единиц HU. После обработки изображение в память компьютера/ сброс на фотопленку. На РКТ выделяются самые незначительные перепады плотности – 0,4-0,5%.

Обычно выполняются 5-10 срезов на расстоянии 5-10мм. Для ориентации расположения срезов 0 обзорный цифровой снимок – рентгенотомограмма, на которой отображаются уровни срезов.

Разновидности КТ.

    Электронно-лучевая- в качестве источника излучения –вакуумные электронные пушки, испускаемые пучок быстрых электронов. (кардиология)

    Спиральная – излучатель движется по спирали по отношению к телу и за короткое время захватывает определенный объем тела, в дальнейшем представленный дискретными слоями. Получение поперечных, фронтальных и сагиттальных срезов.

    Усиленная КТ- проведение томографии после введения внутривенно пациенту водорастворимого контрастного вещества.

    Мультиспиральная – использование многорядных детекторов

    Конусно-лучевая – излучатель двигается по конусу. Приемник движется одновременно с источником. Лучевая нагрузка меньше чем при спиральной и мультиспиральной томографии.

    Поперечная – движение рентгеновской трубки по окружности, в центре которой пациент. В результате поперечные срезы на любом уровне.

    РКТ ангиография

    Трехмерная РКТ

    Виртуальная эндоскопия

    Компьютерные томографы с кардиосинхронизаторами

Особенности изображения органов и тканей

    КТ-изображение не имеет теней и помех от неоднородности тканей, содержащихся в других слоях исследуемого отдела, а также не зависит от порядка расположения тканей с различной рентгеновской плотностью.

    Изображение, полученное при компьютерной томографии, представляет собой массив цифровых данных в виде пространственного распределения величин коэффициентов ослабления в тканях исследуемого слоя, поэтому субъективная ("на глаз") оценка изображения дополнена прямым определением плотности тканей; такие объективные данные можно использовать для углубленного анализа изображений.

    Высокая точность измерений позволяет различать ткани, незначительно (на 0,5%) отличающиеся друг от друга но плотности.

Подготовка:

    Для исследования органов головы, шеи, грудной полости, конечностей- не требуется

    Исследование аорты нижней полой вены, печени, селезенки, почек – легкий завтрак

    Исследование желчного пузыря –натощак

    Поджелудочная железа и печень – меры по уменьшению метеоризма

    Желудок и кишечник- 500 мл 2,5% водорастворимый йодистый препарат.

    При проведение накануне рентгенографии ЖКТ с контрастированием – полное опорожнение пищ.тракта от РКВ.

Показания: очень широки

Противопоказания:

    психические расстройства

    Неотложные состояния

    Беременность, лактация, маленькие дети – в особо важных случаях

    Кровотечения, открытый пневмоторакс

Компьютерная томография - это особый вид рентгенологического исследования, которое проводится посредством непрямого измерения ослабления или затухания, рентгеновских лучей из различных положений, определяемых вокруг обследуемого пациента. В сущности, все, что мы знаем, это:

  • что покидает рентгеновскую трубку,
  • что достигает детектора и
  • каково место рентгеновской трубки и детектора в каждом положении.

Все остальное следует из этой информации. Большинство КТ-сечений ориентированы вертикально по отношению к оси тела. Они обычно называются аксиальными или поперечными срезами. Для каждого среза рентгеновская трубка поворачивается вокруг пациента, толщина среза выбирается заранее. Большинство КТ-сканеров работают по принципу постоянного вращения с веерообразным расхождением лучей. При этом рентгеновская трубка и детектор жестко спарены, а их ротационные движения вокруг сканируемой области происходят одновременно с испусканием и улавливанием рентгеновского излучения. Таким образом, рентгеновские лучи, проходя через пациента, доходят до детекторов, расположенных на противоположной стороне. Веерообразное расхождение происходит в диапазоне от 40° до 60°, в зависимости от устройства аппарата, и определяется углом, начинающимся от фокусного пятна рентгеновской трубки и расширяющимся в виде сектора до наружных границ ряда детекторов. Обычно изображение формируется при каждом обороте в 360°, полученных данных оказывается для этого достаточно. В процессе сканирования во многих точках измеряют коэффициенты ослабления, формируя профайл затухания. На самом деле профайлы затухания представляют собой не что иное, как набор полученных сигналов от всех каналов детекторов с данного угла системы трубка-детектор. Современные КТ-сканеры способны излучать и собирать данные приблизительно с 1400 положений системы детектор-трубка на окружности 360°, или около 4 положений в градусе. Каждый профайл ослабления включает в себя измерения от 1500 каналов детекторов, т. е. приблизительно 30 каналов в градусе, при условии угла расхождения луча 50°. В начале исследования, при продвижении стола пациента с постоянной скоростью внутрь гентри, получают цифровую рентгенограмму («сканограмму» или «топограмму»), на которой в дальнейшем могут быть распланированы требуемые срезы. При КТ-исследовании позвоночника или головы гентри поворачивают под нужным углом, тем самым добиваясь оптимальной ориентации сечений).

Компьютерная томография использует комплексные показания датчика рентгена, который вращается вокруг пациента с целью получения большого количества разнообразных изображений определенной глубины (томограммы), которые переводятся в цифровую форму и преобразовываются в перекрестные изображения. КТ обеспечивает 2- и 3-мерную информацию, которую невозможно получить с помощью простого рентгена и с помощью гораздо более высококонтрастного разрешения. В результате КТ стала новым стандартом для отображения большей части внутричерепных, головных и шейных, внутригрудных и внутрибрюшных структур.

Ранние образцы сканеров КТ использовали только один датчик рентгена, и пациент проходил через сканер с приращением, останавливаясь для каждого снимка. Этот метод был в значительной степени заменен винтовой КТ: пациент непрерывно перемещается через сканер, который непрерывно вращается и делает снимки. Винтовая КТ в большой степени сокращает время отображения и уменьшает толщину пластины. Использование сканеров с многочисленными датчиками (4-64 рядов датчиков рентгена) далее уменьшает время отображения и обеспечивает толщину пластины менее 1 мм.

С таким количеством отображенных данных изображения могут быть восстановлены в почти любом ракурсе (как это делается в МРТ) и могут использоваться для построения 3-мерных снимков при поддержании диагностического решения изображения. Клиническое применение включает ангиографию КТ (например, для оценки легочной эмболии) и кардиоотоб-ражения (например, коронарная ангиография, оценка коронарного отвердения артерии). Электронно-лучевая КТ, другой тип быстрой КТ, может также использоваться для оценки коронарного отвердения артерии.

Снимки КТ могут быть получены с/или без контраста. Неконтрастная КТ может обнаруживать острое кровоизлияние (которое кажется ярко-белым) и характеризовать переломы кости. Контрастная КТ использует IV или устный контраст, или оба. IV контраст, подобный используемому в простом рентгене, применяется для отображения опухолей, инфекции, воспаления и травм в мягких тканях и для оценки состояния сосудистой системы, как в случаях подозрения на легочную эмболию, аортальную аневризму или аортального рассечения. Выделение контраста через почки позволяет дать оценку мочеполовой системы. Для получения информации о контрастных реакциях и их трактовке.

Оральный контраст используется для отображения брюшной области; это помогает отделять кишечную структуру от окружающих. Стандартный устный контраст - контраст на основе бариумного йода, может использоваться в том случае, когда есть подозрение на кишечную перфорацию (например, при травме); низкий осмолярный контраст должен использоваться, когда высок риск аспирации.

Воздействие радиации - важный вопрос при использовании КТ. Лучевая доза от обычной брюшной КТ в 200- 300 раз выше, чем доза радиации, получаемая при типичном рентгене грудной области. КТ сегодня является наиболее распространенным источником искусственного облучения для большей части населения и составляет более 2/3 совокупного медицинского облучения. Эта степень подверженности человека облучению - не тривиальна, риск облучения детей, сегодня испытывающих воздействие радиации КТ, за всю их жизнь, согласно подсчетам, будет намного выше, чем степень облучения взрослых. Поэтому необходимость экспертизы КТ должна быть тщательно взвешена с учетом возможного риска для каждого отдельного пациента.

Мультиспиральная компьютерная томография

Спиральная компьютерная томография с многорядным расположением детекторов (мультиспиральная компьютерная томография)

Компьютерные томографы с многорядным расположением детекторов относятся к самому последнему поколению сканеров. Напротив рентгеновской трубки располагается не один, а несколько рядов детекторов. Это дает возможность значительно укоротить время исследования и улучшить контрастное разрешение, что позволяет, например, четче визуализировать контрастированные кровеносные сосуды. Ряды детекторов Z-оси напротив рентгеновской трубки различны по ширине: наружный ряд шире, чем внутренний. Это обеспечивает лучшие условия для реконструкции изображения после сбора данных.

Сравнение традиционной и спиральной компьютерной томографии

При традиционной компьютерной томографии получают серии последовательных одинаково пространственно расположенных изображений через определенную часть тела, например, брюшную полость или голову. Обязательна короткая пауза после каждого среза для продвижения стола с пациентом в следующее заранее заданное положение. Толщина и наложение/межсрезовый промежуток выбираются заранее. Сырые данные для каждого уровня сохраняются отдельно. Короткая пауза между срезами дает возможность пациенту, находящемуся в сознании, перевести дыхание и тем самым избежать грубых дыхательных артефактов на изображении. Тем не менее, исследование может занимать несколько минут, в зависимости от области сканирования и размеров пациента. Необходимо правильно подобрать время получения изображения после в/в введения КС, что особенно важно для оценки перфузионных эффектов. Компьютерная томография является методом выбора для получения полноценного двухмерного аксиального изображения тела без помех, создаваемых наложением костной ткани и/или воздуха, как это бывает на обычной рентгенограмме.

При спиральной компьютерной томографии с однорядным и многорядным расположением детекторов (МСКТ) сбор данных исследования пациента происходит постоянно во время продвижения стола внутрь гентри. Рентгеновская трубка при этом описывает винтовую траекторию вокруг пациента. Продвижение стола скоординировано со временем, необходимым для оборота трубки на 360° (шаг спирали) - сбор данных продолжается непрерывно в полном объеме. Подобная современная методика значительно улучшает томографию, потому что дыхательные артефакты и возникающие помехи не затрагивают единый набор данных так значительно, как при традиционной компьютерной томографии. Единая база сырых данных используется для восстановления срезов различной толщины и различных интервалов. Частичное наложение сечений улучшает возможности реконструкции.

Сбор данных при исследовании всей брюшной полости занимает 1 - 2 минуты: 2 или 3 спирали, каждая длительностью 10-20 секунд. Ограничение времени обусловлено способностью пациента задержать дыхание и необходимостью охлаждения рентгеновской трубки. Еще некоторое время необходимо на воссоздание изображения. При оценке функции почек требуется небольшая пауза после введения контрастного вещества, чтобы дождаться экскреции контрастного препарата.

Еще одно важное преимущество спирального метода - возможность выявить патологические образования меньшего размера, чем толщина среза. Маленькие метастазы в печени могут быть пропущены, если в результате неодинаковой глубины дыхания пациента во время сканирования не попадают в срез. Метастазы хорошо выявляются из сырых данных спирального метода при восстановлении срезов, полученных с наложением сечений.

Пространственное разрешение

Восстановление изображения основано на различиях в контрастности отдельных структур. На основе этого создается матрица изображения области визуализации 512 х 512 или более элементов изображения (пикселей). Пиксели выглядят на экране монитора как участки различных оттенков серого цвета в зависимости от их коэффициента ослабления. На самом деле это даже не квадратики, а кубики (воксели = объемные элементы), имеющие длину вдоль оси тела, соответственно толщине среза.

Качество изображения повышается с уменьшением вокселей, но это относится только к пространственному разрешению, дальнейшее истончение среза снижает соотношение «сигнал-помеха». Другой недостаток тонких срезов - увеличение дозы облучения пациента. Тем не менее, маленькие воксели с одинаковыми размерами во всех трех измерениях (изотропный воксель), дают значительные преимущества: мультипланарная реконструкция (MPR) в корональной, сагиттальной или других проекциях представлена на изображении без ступенчатого контура). Использование вокселей неодинаковых размеров (анизотропные воксели) для MPR приводит к появлению зубчатости реконструированного изображения. Так, например, могут возникнуть трудности при исключении перелома.

Шаг спирали

Шаг спирали характеризует степень перемещения стола в мм за одно вращение и толщину среза. Медленное продвижение стола формирует сжатую спираль. Ускорение перемещения стола без изменения толщины среза или скорости вращения создает пространство между срезами на получаемой спирали.

Наиболее часто шаг спирали понимают как отношение перемещения (подачи) стола при обороте гентри, выраженное в мм, к коллимации, также выраженной в мм.

Поскольку размерности (мм) в числителе и знаменателе уравновешены, шаг спирали - величина безразмерная. Для МСКТ за т. н. объемный шаг спирали обычно принимают отношение подачи стола к одиночному срезу, а не к полной совокупности срезов вдоль оси Z. Для примера, который был использован выше, объемный шаг спирали равен 16 (24 мм / 1,5 мм). Тем не менее, существует тенденция возврата к первому определению шага спирали.

Новые сканеры дают возможность выбора краниокаудального (ось Z) расширения области исследования по топограмме. Также по мере необходимости корректируются время оборота трубки, коллимирование среза (тонкий или толстый срез) и время исследования (промежуток задержки дыхания). Программное обеспечение, например, «SureView», рассчитывает соответствующий шаг спирали, обычно устанавливая величину между 0,5 и 2,0.

Коллимирование среза: разрешение вдоль оси Z

Разрешение изображения (вдоль оси Z или оси тела пациента) может также быть адаптировано к конкретной диагностической задаче с помощью коллимирования. Срезы толщиной от 5 до 8 мм полностью соответствуют стандартному исследованию брюшной полости. Однако точная локализация небольших фрагментов переломов костей или оценка едва различимых легочных изменений требуют использования тонких срезов (от 0,5 до 2 мм). Что определяет толщину среза?

Термин коллимирование определяют как получение тонкого или толстого среза вдоль продольной оси тела пациента (ось Z). Врач может ограничить веерообразное расхождение пучка излучения от рентгеновской трубки коллиматором. Размер отверстия коллиматора регулирует прохождение лучей, которые попадают на детекторы позади пациента широким или узким потоком. Сужение пучка излучения позволяет улучшить пространственное разрешение вдоль оси Z пациента. Коллиматор может быть расположен не только сразу на выходе из трубки, но также непосредственно перед детекторами, то есть «позади» пациента, если смотреть со стороны источника рентгеновского излучения.

Зависимая от ширины отверстия коллиматора система с одним рядом детекторов позади пациента (одиночный срез) может выполнять срезы толщиной 10 мм, 8 мм, 5 мм или даже 1 мм. КТ-исследование с получением очень тонких сечений именуется «КТ высокого разрешения» (ВРКТ). Если толщина срезов меньше миллиметра - говорят о «КТ сверхвысокого разрешения» (СВРКТ). СВРКТ, применяемая для исследования пирамиды височной кости со срезами толщиной около 0,5 мм, выявляет тонкие линии перелома, проходящие через основание черепа или слуховые косточки в барабанной полости). Для печени высококонтрастное разрешение используется с целью обнаружения метастазов, при этом требуются срезы несколько большей толщины.

Схемы расстановки детекторов

Дальнейшее развитие односрезовой спиральной технологии привело к внедрению мультисрезовой (мультиспиральной) методики, при которой используется не один, а несколько рядов детекторов, расположенных перпендикулярно оси Z напротив источника рентгеновского излучения. Это дает возможность одновременно собирать данные с нескольких сечений.

В связи с веерообразным расхождением излучения ряды детекторов должны иметь разную ширину. Схема расстановки детекторов заключается в том, что ширина детекторов увеличивается от центра к краю, что позволяет варьировать комбинациями толщины и количества получаемых срезов.

Например, 16-срезовое исследование может быть выполнено с 16 тонкими срезами высокого разрешения (для Siemens Sensation 16 это методика 16 х 0,75 мм) или с 16 сечениями вдвое большей толщины. Для подвздошно-бедренной КТ-ангиографии предпочтительно получение объемного среза за один цикл вдоль оси Z. При этом ширина коллимирования 16 х 1,5 мм.

Развитие КТ-сканеров не закончилось 16 срезами. Сбор данных можно ускорить, используя сканеры с 32 и 64 рядами детекторов. Однако тенденция к уменьшению толщины срезов ведет к повышению дозы облучения пациента, что требует дополнительных и уже осуществимых мероприятий по снижению воздействия излучения.

При исследовании печени и поджелудочной железы многие специалисты предпочитают уменьшать толщину срезов с 10 до 3 мм для улучшения резкости изображения. Однако это увеличивает уровень помех приблизительно на 80 %. Поэтому, чтобы сохранить качество изображения, нужно или дополнительно прибавить силу тока на трубке, т. е. повысить силу тока (мА) на 80 %, или увеличить время сканирования (возрастает произведение мАс).

Алгоритм реконструкции изображений

Спиральная компьютерная томография имеет дополнительное преимущество: в процессе восстановления изображения большинство данных не измеряются фактически в конкретном срезе. Взамен этого, измерения, полученные за пределами этого среза, интерполируются с большинством значений вблизи среза и становятся данными, закрепленными за этим срезом. Другими словами: результаты обработки данных вблизи среза являются более важными для восстановления изображения конкретного сечения.

Из этого следует интересный феномен. Доза пациента (в мГр) определяется как мАс за вращение, разделенное на шаг спирали, а доза на одно изображение приравнивается к мАс за вращение без учета шага спирали. Если, например, выставлены настройки 150 мАс за вращение с шагом спирали 1,5, то доза пациента составляет 100 мАс, а доза, приходящаяся на изображение, - 150 мАс. Поэтому использование спиральной технологии может улучшить контрастное разрешение выбором высокого значения мАс. При этом появляется возможность увеличить контрастность изображения, тканевое разрешение (четкость изображения) за счет уменьшения толщины среза и подобрать такой шаг и длину интервала спирали, чтобы доза пациента уменьшалась! Таким образом, большое количество срезов может быть получено без увеличения дозы или нагрузки на рентгеновскую трубку.

Эта технология особенно важна при преобразовании полученных данных в 2-мерные (сагиттальную, криволинейную, корональную) или 3-мерные реконструкции.

Данные измерений от детекторов пропускаются, профайл за профайлом, к электронной части детектора как электрические сигналы, соответствующие фактическому ослаблению рентгеновского излучения. Электрические сигналы оцифровываются и затем пересылаются на видеопроцессор. На этом этапе реконструкции изображения используется метод «конвейера», состоящий из предварительной обработки, фильтрации и обратного проектирования.

Предварительная обработка включает все исправления, произведенные для подготовки полученных данных для восстановления изображения. Например, исправление темнового тока, выходного сигнала, калибровки, коррекция дорожек, увеличение жесткости излучения и др. Эти корректировки выполняются для уменьшения вариаций в работе трубки и детекторов.

Фильтрация использует отрицательные величины для коррекции размазывания изображения, присущего обратному проектированию. Если, например, сканируется цилиндрический водный фантом, который воссоздается без фильтрации, края его окажутся крайне расплывчатыми. Что произойдет, когда восемь профайлов ослабления накладываются друг на друга для восстановления изображения? Так как некоторая часть цилиндра измеряется двумя совмещенными профайлами, вместо реального цилиндра получается звездчатое изображение. Вводя отрицательные величины за пределами положительной составляющей профайлов ослабления, удается достичь того, что края этого цилиндра становятся четкими.

Обратное проектирование перераспределяет данные свернутого скана в 2-мерную матрицу изображения, отображая порченные срезы. Это выполняется, профайл за профайлом, до завершения процесса воссоздания образа. Матрицу изображения можно представить в виде шахматной доски, но состоящей из 512 x 512 или 1024 х 1024 элементов, обычно называемых «пикселями». В результате обратного проектирования каждому пикселю в точности соответствует заданная плотность, которая на экране монитора имеет различные оттенки серого цвета, от светлого до темного. Чем светлее участок экрана, тем выше плотность ткани в пределах пикселя (например, костные структуры).

Влияние напряжения (кВ)

Когда исследуемая анатомическая область характеризуется высокой поглощающей способностью (например, КТ головы, плечевого пояса, грудного или поясничного отделов позвоночника, таза или просто полного пациента), целесообразно использовать повышенное напряжение или, взамен этого, более высокие значения мА. При выборе высокого напряжения на рентгеновской трубке, вы увеличиваете жесткость рентгеновского излучения. Соответственно, рентгеновские лучи гораздо легче проникают через анатомическую область с высокой поглощающей способностью. Положительной стороной этого процесса является снижение низкоэнергетических компонентов излучения, которые поглощаются тканями пациента, не влияя на получение изображения. Для обследования детей и при отслеживании болюса KB может быть целесообразным использование более низкого напряжения, чем в стандартных установках.

Сила тока трубки (мАс)

Сила тока, измеряемая в миллиампер-секундах (мАс), также оказывает влияние на дозу облучения, получаемую пациентом. Крупному больному для получения качественного изображения требуется увеличение силы тока трубки. Таким образом, более тучный пациент получает большую дозу облучения, чем, например, ребенок с заметно меньшими размерами тела.

Области с костными структурами, которые больше поглощают и рассеивают излучение, такие как плечевой пояс и таз, нуждаются в большей силе тока трубки, чем, например, шея, брюшная полость худощавого человека или ноги. Эта зависимость активно используется при защите от облучения.

Время сканирования

Следует выбрать максимально короткое время сканирования, особенно при исследовании брюшной полости и грудной клетки, где сокращения сердца и перистальтика кишечника могут ухудшить качество изображения. Качество КТ-исследования также улучшается при снижении вероятности непроизвольных движений пациента. С другой стороны, может возникать необходимость более длительного сканирования для сбора достаточного количества данных и максимального пространственного разрешения. Иногда выбор продленного времени сканирования со снижением силы тока используется сознательно с целью продления срока эксплуатации рентгеновской трубки.

Трехмерная реконструкция

В связи с тем, что при спиральной томографии собирается объем данных для целой области тела пациента, визуализация переломов и кровеносных сосудов заметно улучшилась. Применяют несколько различных методов трехмерной реконструкции:

Проекция максимальной интенсивности (Maximal Intensity Projection), MIP

MIP - это математический метод, посредством которого из двухмерного или трехмерного набора данных извлекаются гиперинтенсивные воксели. Воксели выбираются из набора данных, полученных иод различными углами, и затем проецируются как двухмерные изображения. Трехмерный эффект получают изменением угла проецирования с малым шагом, и затем, визуализируя восстановленное изображение в быстрой последовательности (т. е. в динамическом режиме просмотра). Этот метод часто используется при исследовании кровеносных сосудов с контрастным усилением.

Мультипланарная реконструкция (Multiplanar Reconstruction), MPR

Эта методика делает возможной реконструкцию изображения в любой проекции, будь то корональная, сагиттальная или криволинейная. MPR является ценным инструментом в диагностике переломов и в ортопедии. Например, традиционные аксиальные срезы не всегда дают полную информацию о переломах. Тончайший перелом без смещения отломков и нарушения кортикальной пластинки может быть более эффективно обнаружен с помощью MPR.

Трехмерная реконструкция затененных поверхностей (Surface Shaded Display), SSD

Этот метод воссоздает поверхность органа или кости, определенную выше заданного порога в единицах Хаунсфилда. Выбор угла изображения, так же как местоположение гипотетического источника света, является ключевым фактором для получения оптимальной реконструкции (компьютер вычисляет и удаляет с изображения участки затенения). На поверхности кости четко виден перелом дистальной части лучевой кости, продемонстрированный с помощью MPR.

Трехмерная SSD также используется при планировании хирургического вмешательства, как в случае травматического перелома позвоночника. Меняя угол изображения, легко обнаружить компрессионный перелом грудного отдела позвоночника и оценить состояние межпозвоночных отверстий. Последние можно исследовать в нескольких различных проекциях. На сагиттальной МПР виден костный фрагмент, который смещается в спинномозговой канал.

Основные правила чтения компьютерных томограмм

  • Анатомическая ориентация

Изображение на мониторе - не просто 2-мерное отображение анатомических структур, оно содержит данные о средней величине поглощения тканями рентгеновского излучения, представленное матрицей, состоящей из 512 x 512 элементов (пикселей). Срез имеет определенную толщину (d S) и представляет собой сумму кубовидных элементов (вокселей) одинакового размера, объединенных в матрицу. Эта техническая особенность лежит в основе эффекта частного объема, объясняемого ниже. Получаемые изображения обычно представляют собой вид снизу (с каудальной стороны). Поэтому правая сторона пациента находится на изображении слева и наоборот. Например, печень, расположенная в правой половине брюшной полости, представлена на левой стороне изображения. А органы, расположенные слева, такие как желудок и селезенка, видны на картинке справа. Передняя поверхность тела, в данном случае представленная передней брюшной стенкой, определяется в верхней части изображения, а задняя поверхность с позвоночником - снизу. Тот же принцип формирования изображения используется при традиционной рентгенографии.

  • Эффекты частного объема

Рентгенолог сам устанавливает толщину среза (d S). Для исследования грудной и брюшной полостей обычно выбирают 8 - 10 мм, а для черепа, позвоночника, глазниц и пирамид височных костей - 2 - 5 мм. Поэтому структуры могут занимать всю толщину среза или только часть ее. Интенсивность окраски вокселя по серой шкале зависит от среднего коэффициента ослабления для всех его компонентов. Если структура имеет одинаковую форму по всей толщине среза, она будет выглядеть четко очерченной, как в случае брюшной аорты и нижней полой вены.

Эффект частного объема возникает, когда структура занимает не всю толщину среза. Например, если срез включает только часть тела позвонка и часть диска, то их контуры оказываются нечеткими. То же самое наблюдается, когда орган суживается внутри среза. Это является причиной плохой четкости полюсов почки, контуров желчного и мочевого пузыря.

  • Различие между узловыми и трубчатыми структурами

Важно уметь отличать увеличенные и патологически измененные ЛУ от сосудов и мышц, попавших в поперечное сечение. Сделать это только по одному сечению бывает очень сложно, потому что эти структуры имеют одинаковую плотность (и одинаковый оттенок серого). Поэтому следует всегда анализировать соседние срезы, расположенные краниальнее и каудальнее. Уточнив, на скольких срезах видна данная структура, можно решить дилемму, видим ли мы увеличенный узел или более-менее длинную трубчатую структуру: лимфоузелбудет определяться только на одном - двух срезах и не визуализируется на соседних. Аорта, нижняя полая венаи мышцы, например, пояснично-подвздошная, видны на протяжении серии кранио-каудальных изображений.

Если возникло подозрение на увеличенное узловое образование на одном срезе, то врачу следует немедленно сравнить соседние сечения, чтобы четко определить, не является ли это «образование» просто сосудом или мышцей в поперечном сечении. Такая тактика хороша и тем, что дает возможность быстро установить эффект частного объема.

  • Денситометрия (измерение плотности тканей)

Если не известно, например, является ли жидкость, найденная в плевральной полости, выпотом или кровью, измерение ее плотности облегчает дифференциальный диагноз. Точно так же, денситометрию можно применить при очаговых образованиях в паренхиме печени или почек. Однако не рекомендуется делать заключение на основании оценки одиночного вокселя, т. к. подобные измерения малодостоверны. Для большей надежности следует расширить «область интереса», состоящую из нескольких вокселей в очаговом образовании, какой-либо структуре или объеме жидкости. Компьютер рассчитывает среднюю плотность и величину стандартного отклонения.

Следует быть особенно внимательным и не упустить артефакты увеличения жесткости излучения или эффекты частного объема. Если образование распространяется не на всю толщину среза, то измерение плотности включает в себя соседствующие с ним структуры. Плотность образования будет измерена корректно, только если оно заполняет всю толщину среза (d S). В этом случае более вероятно, что измерения будут затрагивать само образование, а не соседние структуры. Если ds больше, чем диаметр образования, например, очаг маленьких размеров, это приведет к проявлению эффекта частного объема на любом уровне сканирования.

  • Уровни плотности различных типов тканей

Современные аппараты способны охватить 4096 оттенков серой шкалы, которыми представлены различные уровни плотности в единицах Хаунсфилда (HU). Плотность воды произвольно была принята за 0 HU, а воздуха за - 1000 HU. Экран монитора может отображать максимум 256 оттенков серого. Однако человеческий глаз способен различить только около 20. Поскольку спектр плотностей тканей человека простирается шире, чем эти довольно узкие рамки, можно выбрать и отрегулировать окно изображения таким образом, чтобы были видны только ткани требуемого диапазона плотности.

Средний уровень плотности окна необходимо установить как можно ближе к уровню плотности исследуемых тканей. Легкое, из-за повышенной воздушности, лучше исследовать в окне с настройками низкого значения HU, тогда как для костной ткани уровень окна следует значительно повысить. От ширины окна зависит контрастность изображения: суженное окно более контрастно, поскольку 20 оттенков серого перекрывают только малую часть шкалы плотностей.

Важно отметить, что уровень плотности почти всех паренхиматозных органов находится в пределах узких границ между 10 и 90 HU. Исключением являются легкие, поэтому, как было указано выше, необходимо установить специальные параметры окна. В отношении кровоизлияний следует принять в расчет, что уровень плотности недавно свернувшейся крови примерно на 30 HU выше, чем свежей крови. Затем уровень плотности снова падает в участках старого кровоизлияния и в зонах лизиса тромбов. Экссудат с содержанием белка более 30 г/л нелегко отличить от транссудата (с содержанием белка ниже 30 г/л) при стандартных настройках окна. В дополнение следует сказать, что высокая степень совпадения плотностей, например, у лимфоузлов, селезенки, мышц и поджелудочной железы, делает невозможным установить принадлежность ткани только на основании оценки плотности.

В заключение следует отметить, что обычные значения плотностей тканей также индивидуальны у разных людей и меняются под влиянием контрастных препаратов в циркулирующей крови и в органе. Последний аспект имеет особое значение для исследования мочеполовой системы и касается в/в введения КВ. При этом контрастный препарат быстро начинает выделяться почками, что приводит к повышению плотности паренхимы почек во время сканирования. Этот эффект можно использовать для оценки функции почек.

  • Документирование исследований в различных окнах

Когда изображение получено, для документирования исследования необходимо перенести снимок на пленку (сделать твердую копию). Например, при оценке состояния средостения и мягких тканей грудной клетки устанавливается такое окно, что мышцы и жировая ткань четко визуализируются оттенками серого цвета. При этом используется мягко-тканное окно с центром на 50 HU и шириной 350 HU. В результате серым цветом представлены ткани плотностью от -125 HU (50-350/2) до +225 HU (50+350/2). Все ткани с плотностью ниже чем -125 HU, такие как легкое, выглядят черными. Ткани с плотностью выше +225 HU - белыми, а их внутренняя структура не дифференцируется.

Если необходимо исследовать паренхиму легких, например, когда исключают узловые образования, центр окна должен быть снижен до -200 HU, а ширина увеличена (2000 HU). При использовании данного окна (легочное окно), лучше дифференцируются структуры лёгкого с низкой плотностью.

Для достижения максимальной контрастности между серым и белым веществом головного мозга следует выбрать специальное мозговое окно. Так как плотности серого и белого вещества различаются незначительно, мягкотканное окно должно быть очень узким (80 - 100 HU) и высококонтрастным, а его центр должен находиться в середине значений плотности мозговой ткани (35 HU). При таких установках невозможно исследовать кости черепа, т. к. все структуры плотнее 75 - 85 HU выглядят белыми. Поэтому центр и ширина костного окна должны быть значительно выше - около +300 HU и 1500 HU, соответственно. Метастазы в затылочной кости визуализируются только при использовании костного. но не мозгового окна. С другой стороны, головной мозг практически не виден в костном окне, поэтому небольшие метастазы в веществе мозга будут незаметны. Следуем всегда помнить эти технические детали, т. к. на пленку в большинстве случаев не переносят изображения во всех окнах. Врач, проводящий исследование, просматривает изображения на экране во всех окнах, чтобы не пропустить важные признаки патологии.


Компьютерная томография, сокращенно КТ - это способ получения послойных срезов тела человека или другого объека с помощью рентгеновских лучей. Этот метод для диагностических целей был предложен к использованию в 1972 году, его основателями принято считать Годфри Хаунсфилда и Алана Кормака, получившими за свои разработки Нобелевскую премию. В основе компьютерной томографии лежит измерение разницы ослабления рентгеновского излучения различными тканями, обработка полученных данных компьютером с помощью математических алгоритмов и формирование графического отображения (срезов) органов человека на экране с последующей их интерпретацией врачом-радиологом.

В момент своего появления компьютерная томография произвела революцию в медицинской диагностике, так как впервые появилась возможность рассмотреть послойное изображение тела человека без вмешательства скальпеля хирурга или эндоскопа. Сегодня метод КТ прочно занял свою нишу в диагностике самых разных болезней — прежде всего, онкологических заболеваний, болезней легких, костей, органов живота, внутреннего уха и т.д.

ПРИНЦИП РАБОТЫ КОМПЬЮТЕРНОГО ТОМОГРАФА

Данные, которые могут быть получены при компьютерной томографии, это:

  • характеристики излучения, полученные на выходе рентгеновской трубки
  • характеристики излучения, достигнувшего детектора
  • месторасположение трубки и детектора в каждый момент времени.

Все остальные данные получаются посредством обработки полученной информации. Большая часть сечений при компьютерной томографии имеет ориентацию перпендикулярно по отношению к продольной оси тела.

Для получения среза трубка оборачивается вокруг пациента на 360 градусов, толщина среза при этом задается заранее. В обычном КТ-сканере трубка вращается постоянно, излучение расходится веерообразно. Рентгеновская трубка и принимающее устройство (детектор) спарены, их вращение вокруг сканируемой зоны происходит синхронно: рентгеновское излучение испускается и улавливается детекторами, расположенными на противоположной стороне, практически одновременно. Веерообразное расхождение происходит под углом от 40 до 60 градусов, в зависимости от конкретного аппарата.

Принцип действия компьютерного томографа : вокруг тела пациента вращается рентгеновская трубка. Расположенные на противоположной стороне детекторы улавливают рентгеновское излучение.

Одно изображение формируется обычно при повороте трубки на 360 градусов: измеряются коэффициенты ослабления излучения во множестве точек (современные аппараты имеют возможность собирать информацию с 1400 точек и больше).

МУЛЬТИСПИРАЛЬНАЯ (МНОГОСРЕЗОВАЯ) КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ — ЧТО ЭТО?

Наиболее современными являются томографы с множественными рядами детекторов: с трубкой спарен не один, а несколько рядов детекторов, что способствует укорочению времени исследования, повышает разрешающую способность, позволяет более четко визуализировать мелкие структуры (например, небольшие кровеносные сосуды). В зависимости от количества ряда детекторов компьютерные томографы бывают 16-, 32-, 64-, 128-срезовыми и т.д. Чем больше количество детекторов, тем быстрее можно получить качественные изображения органа.

ОТЛИЧИЕ СПИРАЛЬНОЙ И ОБЫЧНОЙ (ПОШАГОВОЙ) КТ

В чем отличие обычного компьютерного томографа от мультиспирального? При пошаговой (традиционной) томографии срезы получаются следующим образом: происходит один оборот (или несколько оборотов) трубки вокруг заданного участка тела, в результате чего формируется изображение одного среза определенной толщины; затем стол (и пациент) сдвигается в заданном направлении на определенное расстояние, величина которого выбирается заранее. Также выбирается величина, на которую срезы будут перекрывать друг друга — это необходимо, чтобы не упустить мелкие детали изображения. Исследование, таким образом, занимает несколько минут (в зависимости от размеров пациента), требует более точного расчета времени при введении контрастного средства.

В отличие от пошаговой томографии, при спиральной КТ получение данных происходит при продвижении пациента внутри аппарата постоянно, а трубка при этом совершает непрерывное движение по кругу. Скорость движения стола привязана ко времени, необходимому для одного оборота трубки, в результате чего получается массив данных, более пригодных для создания качественных реконструкций и коррекции неточностей изображений.

Устройство мультиспирального (многосрезового) компьютерного томографа: одновременно с движением пациента происходит вращение рентгеновской трубки, испускающей широкий пучок рентгеновских лучей. Траектория сканирования приобретает спиральную форму.

Спиральная компьютерная томография обладает следующими преимуществами перед пошаговой: возможность создания более качественных трехмерных и мультипланарных реконструкций; более высокая скорость проведения исследования; возможность выявления образований, размеры которых меньше толщины среза: если при пошаговой КТ, когда образование попадает между срезами, его не видно, то при спиральной визуализация возможна.

ВТОРОЕ МНЕНИЕ ПО КТ

Несмотря на высокую точность компьютерной томографии, иногда результаты диагностики могут быть неоднозначными или сомнительными. В таких случаях помогает пересмотр данных КТ опытным радиологом, который специализируется на определенном виде обследования. Такая высококвалифицированная и независимая расшифровка снимков КТ позволяет уточнить диагноз и предоставляет лечащему врачу точную информацию для выбора правильного лечения. Получить экспертную расшифровку результатов компьютерной томографии можно с помощью системы консультаций Национальной телерадиологической сети. Достаточно загрузить КТ-снимки с диска и получить точное заключение, составленное по наиболее современным стандартам.



gastroguru © 2017